GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other types  (2)
Document type
Source
Language
Years
  • 1
    Publication Date: 2021-10-27
    Description: Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe.
    Keywords: 550 ; impact forecasting ; natural hazards ; early warning
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-17
    Description: Volcanic crises are often associated with magmatic intrusions or the pressurization of magma chambers of various shapes. These volumetric sources deform the country rocks, changing their density, and cause surface uplift. Both the net mass of intruding magmatic fluids and these deformation effects contribute to surface gravity changes. Thus, to estimate the intrusion mass from gravity changes, the deformation effects must be accounted for. We develop analytical solutions and computer codes for the gravity changes caused by triaxial sources of expansion. This establishes coupled solutions for joint inversions of deformation and gravity changes. Such inversions can constrain both the intrusion mass and the deformation source parameters more accurately.
    Description: Plain Language Summary: Volcanic crises are usually associated with magmatic fluids that intrude and deform the host rocks before potentially breaching the Earth's surface. It is important to estimate how much fluid (mass and volume) is on the move. Volume can be determined from the measured surface uplift. Mass can be determined from surface gravity changes. The fluid intrusion increases the mass below the volcano, thereby increasing the gravity and pressurizing the rocks. This dilates parts of the host rock and compresses other parts, changing the rock density and redistributing the rock mass. This causes secondary gravity changes, called deformation‐induced gravity changes. The measured gravity change is always the sum of the mass and deformation‐induced contributions. Here, we develop mathematical equations for the rapid estimation of these deformation‐induced gravity changes caused by arbitrary intrusion shapes. This way we can take the mass contribution apart from the deformation contribution. We show that by using this solution not only the intrusion mass, but also other intrusion parameters, including the volume, depth, and shape can be calculated more accurately.
    Description: Key Points; We develop analytical solutions for gravity changes due to the point Compound Dislocation Model simulating triaxial expansions. Rapid coupled inversions of deformation and gravity changes, accounting for deformation‐induced gravity changes are now possible. For shallow sources, estimation errors in the chamber volume change may lead to large biases in the simulated gravity changes.
    Description: EU Horizon 2020 programme NEWTON‐g project, under the FETOPEN‐ Grant Agreement No.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://volcanodeformation.com/onewebmedia/pCDMgravity.zip
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...