GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Geography ; Oceanography ; Sedimentology ; Physical geography ; Konferenzschrift ; Aufsatzsammlung ; Meereskunde ; Massenbewegung
    Description / Table of Contents: Submarine mass movements are a hidden geohazard with large destructive potential for submarine installations and coastal areas. This hazard and associated risk is growing in proportion with increasing population of coastal urban agglomerations, industrial infrastructure, and coastal tourism. Also, the intensified use of the seafloor for natural resource production, and deep sea cables constitutes an increasing risk. Submarine slides may alter the coastline and bear a high tsunamogenic potential. There is a potential link of submarine mass wasting with climate change, as submarine landslides can uncover and release large amounts greenhouse gases, mainly methane, that are now stored in marine sediments. The factors that govern the stability of submarine slopes against failure, the processes that lead to slope collapses and the collapse processes by themselves need to be better understood in order to foresee and prepare society for potentially hazardous events. This book volume consists of a collection of cutting edge scientific research by international experts in the field, covering geological, geophysical, engineering and environmental aspects of submarine slope failures. The focus is on understanding the full spectrum of challenges presented by this major coastal and offshore geohazard
    Type of Medium: Book
    Pages: XVI, 683 S. , Ill., graph. Darst., Kt.
    ISBN: 9783319009711
    Series Statement: Advances in natural and technological hazards research 37
    DDC: 551.46
    Language: English
    Note: Literaturangaben , Physical properties of sedimentsGas hydrates and role of interstitial fluids in submarine slope failure -- Slope stability and risk assessment -- Monitoring, observation and repeated surveys of active slope failure processes -- Understanding failure processes from submarine landslide geomorphology -- Interaction between ocean circulation and MTDs -- Landslide generated tsunamis -- Long-term record of submarine landslides and MTD paleoseismology -- Outcrops of ancient submarine landslides.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: Since the work of Griggs & Blacic (1965) it is well known that the crystal plastic flow strength of ‘wet’ quartz samples is much lower than that of ‘dry’ samples deformed at the same conditions, and the general effect of water on dislocation creep microstructures has been documented (e.g. Hirth & Tullis 1992), but its effect on the recrystallized grain size has not been quantified. The recrystallized grain size is the most reliable and most easily measurable microstructural feature to derive flow stresses from natural mylonites (e.g. White 1979, Kohlstedt et al. 1980). In a recent experimental study, a well-constrained recrystallized grain size piezometer for quartz (Stipp & Tullis 2003) was calibrated using natural as-is quartzites; the use of a molten salt cell at high confining pressure (1.5GPa) in a Griggs-type apparatus allowed good stress resolution (Green & Borch 1989). There has been some debate as to whether there is any independent effect of water on the recrystallized grain size piezometer. Two laboratory studies on olivine aggregates (at different pressures) report contradictory results; van der Wal et al. (1993) found that the recrystallized grain size piezometer is independent of the water content, whereas Jung & Karato (2001) observed a water-dependence of the piezometer. In this study, we have investigated changes in the recrystallized grain size and other deformation microstructures of quartz within dislocation creep regimes 2 and 3 of Hirth & Tullis (1992). Deformation experiments on Black Hills quartzite with three different initial water contents (as-is, wateradded and vacuum-dried) were carried out in order to evaluate the effect of water on the recrystallized grain size / flow stress piezometer...
    Description: conference
    Keywords: 551 ; VKA 200 ; VAE 120 ; VAE 140 ; VHB 400 ; VKA 120 ; VKB 270 ; Gefügekunde der Gesteine ; Methodik {Strukturgeologie} ; Gesteinsdeformation {Strukturgeologie} ; Oxide und Hydroxide {Mineralogie} ; Experimentelle Petrologie ; Produkte mechanischer Deformation {Petrologie} ; Quarzit ; Deformation 〈Geologie〉 ; Experiment ; Quarz ; Rekritallisationstextur
    Language: German
    Type: anthologyArticle , publishedVersion
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...