GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © National Research Council Canada, 2004. This article is posted here by permission of National Research Council Canada for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 61 (2004): 788-803, doi:10.1139/F04-027.
    Description: The dimethylsulfide (DMS) production model NODEM (Northern Oceans DMS Emission Model) was coupled with the water column ocean model GOTM (General Ocean Turbulence Model) that includes a two-equation k&150;ε turbulence scheme. This coupled physical-biogeochemical ocean model represents a significant improvement over the previous uncoupled version of NODEM that was driven by a diagnostic vertical mixing scheme. Using the same set of biogeochemical parameters, the coupled model is used to simulate the annual cycles of 1992 and 1993 at Hydrostation S in the Sargasso Sea. The better reproduction of the turbulent mixing environment corrects some deficiencies in nitrogen cycling, especially in the seasonal evolution of the nutrient concentrations. Hence, the coupled model captures the late-winter chlorophyll- and DMS(P)-rich blooms. It is also more adept at reproducing the vertical distribution of chlorophyll and DMS(P) in summer. Moreover, the DMS pool becomes less dependent on parameters controlling the nitrogen cycle and relatively more sensitive to parameters related to the sulfur cycle. Finally, the coupled model reproduces some of the observed differences in DMS(P) pools between 1992 and 1993, the latter being an independent data set not used in calibrating the initial version of NODEM.
    Description: This work was supported in part by the Government of Canada’s Climate Change Action Fund and by the Canadian–SOLAS Network (Surface Ocean – Lower Atmosphere Study) of the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Climate and Atmospheric Sciences.
    Keywords: Dimethylsulfide (DMS) ; NODEM (Northern Oceans DMS Emission Model) ; GOTM (General Ocean Turbulence Model)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 980236 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S10, doi:10.1029/2003JC001795.
    Description: Gas transfer rates were determined from vertical profile measurements of atmospheric dimethylsulfide (DMS) gradients over the equatorial Pacific Ocean obtained during the GasEx-2001 cruise. A quadratic relationship between gas transfer velocity and wind speed was derived from the DMS flux measurements; this relationship was in close agreement with a parameterization derived from relaxed eddy accumulation measurements of DMS over the northeastern Pacific Ocean. However, the GasEx-2001 relationship results in gas transfer rates that are a factor 2 higher than gas transfer rates calculated from a parameterization that is based on coincident eddy correlation measurements of CO2 flux. The measurement precision of both the profiling and eddy correlation techniques applied during GasEx-2001 is comparable; the two gas transfer data sets are in agreement within their uncertainty. Differences in the number of samples and the wind speed range over which CO2 and DMS fluxes were measured are likely causes for the observed discrepancy.
    Description: Funding for this work came from the Netherlands Organization for Scientific Research (NWO) and from the NOP project 951203: ‘‘Micrometeorology of air/sea fluxes of carbon dioxide. This work was supported by the Global Carbon Cycle project of the NOAA Office of Global Programs grant NA17RJ1223, National Science Foundation grant OCE-9986724, and NSF grant ATM-0120569.
    Keywords: Dimethylsulfide (DMS) ; Atmospheric gradients ; Micrometeorology ; GasEx-2001
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2005. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 295 (2005): 33-42, doi:10.3354/meps295033.
    Description: Gradients of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), and bacterial numbers and diversity from the surface microlayer to 500 cm depth were assessed in coastal waters surrounding the Martha’s Vineyard Coastal Observatory, Massachusetts, USA. Microlayer samples were collected with a surface skimmer: a partially submerged, rotating glass cylinder (‘drum’) that allows the collection of a thin layer of water by adherence to the drum. A depletion of DMS towards the water surface (10 cm) was found at all sampling days, with largest gradients during rough sea surface conditions. The steep gradients show that gas fluxes and transfer velocities, based on the concentration disequilibrium between the water and the atmosphere, need to be based on near surface gas concentration values. Elevated DMSP, DMSO concentrations and bacterial numbers were found at the sea surface during calm conditions. Although degassing and photo-oxidation on the skimmer will bias the microlayer data, the results indicate stratification of DMSP, DMSO and bacteria during periods of smooth sea surface conditions.
    Description: We also thank the postdoctoral scholar program at the Woods Hole Oceanographic Institution, with funding provided by the J. Seward Johnson Fund.
    Keywords: Marine sulfur ; Bacteria ; Depth profiles ; Microlayer sampling ; Coastal waters ; DMS ; DMSP ; DMSO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3269–3286, doi:10.1002/2016JC012465.
    Description: Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ∼1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3–8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p 〈 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p 〈 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.
    Description: Natural Sciences and Engineering Research Council of Canada, from the Peter Wall Institute for Advanced Studies
    Description: 2017-10-24
    Keywords: Dimethylsulfide ; DMSP ; DMSO ; DMS turnover ; Rate measurements ; Isotopic tracers ; Sea-air flux ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 322 (2006): 239-248, doi:10.3354/meps322239.
    Description: Dimethylsulfoniopropionate (DMSP) synthesized by marine phytoplankton is the principal source of dimethylsulfide (DMS), an important climate-affecting gas. Prior research has demonstrated that grazing by invertebrate phytoplanktivores often affects the dynamics of DMS production from algal DMSP, but the effects of grazing by phytoplanktivorous fish have not previously been investigated. We studied the fate of algal DMSP following grazing by juvenile Atlantic menhaden Brevoortia tyrannus (13 cm fork length), which are generally viewed as the most specialized for phytoplanktivory of all postlarval fish. The menhaden were fed the dinoflagellate Prorocentrum micans, containing 1 to 2 pmol DMSP cell–1. During the first 24 h following ingestion of algal DMSP, almost none of the DMSP (ca. 1%) appeared as DMS. About 21% of ingested DMSP appeared in the water column as dissolved DMSP, peaking in concentration 9 to 11 h after feeding; in natural settings, this fraction would be poised for microbial metabolism, including potential conversion to DMS in surface waters from which outgassing to the atmosphere could occur. About 10% of ingested DMSP appeared in fecal pellets that tended to sink rapidly toward the bottom of the tanks. About 33% of ingested DMSP was deposited in the tissues of the menhaden, in particular in the red and white swimming muscles, in which we observed concentrations exceeding 0.7 µmol g–1. This final fraction could ultimately be metabolized to DMS, or it could be passed up food chains and possibly act as a taste factor in commercially important piscivores such as striped bass and bluefish. In total, our research demonstrated that at least two-thirds of the ingested DMSP ends up in tissues or feces or in solution in the ambient water in the first 24 h after feeding, and virtually none is converted to ambient DMS during that time period.
    Description: Financial support came from Michigan State University (R.W.H. sabbatical) and National Science Foundation, Division of Ocean Sciences Grant nos. OCE-9411497 and OCE-9102532.
    Keywords: Dimethylsulfide ; Dimethylsulfoniopropionate ; Menhaden ; DMS ; DMSP ; Brevoortia tyrannus ; Taste factor ; Phytoplanktivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L23609, doi:10.1029/2011GL049712.
    Description: The vast Antarctic sea-ice zone (SIZ) is a potentially significant source of the climate-active gas dimethylsulfide (DMS), yet few data are available on the concentrations and turnover rates of DMS and the related compounds dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) in sea ice environments. Here we present new measurements characterizing the spatial variability of DMS, DMSP, and DMSO concentrations across the Antarctic SIZ, and results from tracer experiments quantifying the production rates of DMS from various sources. We observed extremely high concentrations (〉200 nM) and turnover rates (〉100 nM d−1) of DMS in sea-ice brines, indicating intense cycling of DMS/P/O. Our results demonstrate a previously unrecognized role for DMSO reduction as a major pathway of DMS production in Antarctic sea ice.
    Description: This work was supported in part by Woods Hole Oceanographic Institution’s Ocean Life Institute and by NSF grant ANT-0838872 to KRA.
    Description: 2012-06-14
    Keywords: DMS ; DMSO ; DMSP ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2007. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 343 (2007): 131-140, doi:10.3354/meps06825.
    Description: Dimethylsulfoniopropionate (DMSP) synthesized by marine phytoplankton is the principal source of dimethylsulfide (DMS), an important climate-affecting gas. Grazing by small zooplankton on phytoplankton often accelerates DMS production from algal DMSP. The effects of grazing by benthic suspension feeders, such as bivalve molluscs, however, have not been studied, even though their populations sometimes process a sizable fraction of local phytoplankton production. We fed Tetraselmis sp. Strain UW474 (27 to 42 fmol DMSP cell–1) to adult mussels Mytilus edulis and scallops Argopecten irradians and studied the fate of the algal DMSP during the 24 h following ingestion. Almost none of the ingested DMSP reappeared in the environment as DMS or DMSP; the amount that appeared in the ambient water as DMS was 〈1% of that ingested, and the sum total that appeared either as fecal DMSP (which microbes might convert to DMS) or in the water as DMS or DMSP was ≤3 to 4% of that ingested. In the short term, therefore, thriving bivalve populations probably strongly reduce the rate of DMS formation (direct or indirect) from local algal DMSP, in contrast to zooplankton populations. Ingested DMSP is likely accumulated in the bodies of mussels and scallops. However, although we have weak evidence of partial accumulation in scallop gastrointestinal tissue, we were unable to document accumulation in mussels because of high variability and statistical nonnormality in their naturally occurring DMSP content. In total, we showed that in the 24 h following feeding, mussels and scallops do not facilitate ambient DMS formation from algal DMSP and evidently sequester most of the algal DMSP they ingest.
    Description: Financial support came from Michigan State University (R.W.H. sabbatical) and the US National Science Foundation, grants OCE-9411497 and OCE-9102532.
    Keywords: Dimethylsulfide ; DMS ; Dimethylsulfoniopropionate ; DMSP ; Bivalves ; Mussels ; Scallops ; Mytilus edulis ; Argopecten irradians ; Phytoplanktivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...