GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biological hotspots  (1)
  • Carbon  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05011, doi:10.1029/2006JC003899.
    Description: In September 2004 a detailed physical and chemical survey was conducted on an anticyclonic, cold-core eddy located seaward of the Chukchi Shelf in the western Arctic Ocean. The eddy had a diameter of ∼16 km and was centered at a depth of ∼160 m between the 1000 and 1500 m isobaths over the continental slope. The water in the core of the eddy (total volume of 25 km3) was of Pacific origin, and contained elevated concentrations of nutrients, organic carbon, and suspended particles. The feature, which likely formed from the boundary current along the edge of the Chukchi Shelf, provides a mechanism for transport of carbon, oxygen, and nutrients directly into the upper halocline of the Canada Basin. Nutrient concentrations in the eddy core were elevated compared to waters of similar density in the deep Canada Basin: silicate (+20 μmol L−1), nitrate (+5 μmol L−1), and phosphate (+0.4 μmol L−1). Organic carbon in the eddy core was also elevated: POC (+3.8 μmol L−1) and DOC (+11 μmol L−1). From these observations, the eddy contained 1.25 × 109 moles Si, 4.5 × 108 moles NO3 −, 5.5 × 107 moles PO3 −, 1.2 × 108 moles POC, and 1.9 × 109 moles DOC, all available for transport to the interior of the Canada Basin. This suggests that such eddies likely play a significant role in maintaining the nutrient maxima observed in the upper halocline. Assuming that shelf-to-basin eddy transport is the dominant renewal mechanism for waters of the upper halocline, remineralization of the excess organic carbon transported into the interior would consume 6.70 × 1010 moles of O2, or one half the total oxygen consumption anticipated arising from all export processes impacting the upper halocline.
    Description: This work was supported by the National Science Foundation, and office of Naval Research; DH OPP-0124900, NB OPP-0124868, DK OPP 0124872, RP N00014-02-1-0317.
    Keywords: Arctic ; Eddy ; Carbon ; Nutrients ; Shelf-basin exchange ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 53-72, doi:10.1016/j.dsr2.2015.06.006.
    Description: The flow of nutrient-rich winter water (WW) through the Chukchi Sea plays an important and previously uncharacterized role in sustaining summer phytoplankton blooms. Using hydrographic and biogeochemical data collected as part of the ICESCAPE program (June-July 2010-11), we examined phytoplankton bloom dynamics in relation to the distribution and circulation of WW (defined as water with potential temperature ≤ -1.6°C) across the Chukchi shelf. Characterized by high concentrations of nitrate (mean: 12.3 ± 5.13 μmol L-1) that typically limits primary production in this region, WW was correlated with extremely high phytoplankton biomass, with mean chlorophyll a concentrations that were three-fold higher in WW (8.64 ± 9.75 μg L-1) than in adjacent warmer water (2.79 ± 5.58 μg L-1). Maximum chlorophyll a concentrations (~30 μg L-1) were typically positioned at the interface between nutrient-rich WW and shallower, warmer water with more light availability. Comparing satellite-based calculations of open water duration to phytoplankton biomass, nutrient concentrations, and oxygen saturation revealed widespread evidence of under-ice blooms prior to our sampling, with biogeochemical properties indicating that blooms had already terminated in many places where WW was no longer present. Our results suggest that summer phytoplankton blooms are sustained for a longer duration along the pathways of nutrient-rich WW and that biological hotspots in this region (e.g. the mouth of Barrow Canyon) are largely driven by the flow and confluence of these extremely productive pathways of WW that flow across the Chukchi shelf.
    Description: This material is based upon work supported by the National Aeronautic and Space Administration (NASA) under Grant No. NNX10AF42G and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0645962 to K.E. Lowry.
    Keywords: Phytoplankton ; Winter water ; Under-ice blooms ; Biological hotspots ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...