GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-18
    Description: Warm periods in Earth's history tend to cool more slowly than cool periods warm. Carbon cycle feedbacks play a major role in these dynamics, from the slower rate of recovery of ocean carbon export production, to the slower re- establishment of geosphere carbon reservoirs, relative to rates of loss. Here we explore one- differences in how the global ocean takes up and gives up heat and carbon in forced rapid warming and cooling climate scenarios. We force an intermediate- complexity earth system model using two atmospheric CO2 scenarios. A ramp-up (1% per year increase in atmospheric CO2 for 150 years) starts from an average global CO2 concentration of 285 ppm to represent warming of an icehouse climate. A ramp- down (1% per year decrease in atmospheric CO2 for 150 years) starts from an average global CO2 concentration of 1257 ppm to represent cooling of a greenhouse climate. Atmospheric CO2 is then held constant in each simulation and the model is integrated an additional 350 years. The ramp-down simulation shows a weaker response of surface air temperature to changes in radiative forcing relative to the ramp-up scenario. This weaker response is due to a relatively large and fast release of heat from the ocean to the atmosphere. This asymmetry in heat exchange in cooling and warming scenarios exists mainly because of differences in the response of the ocean circulation to forcing. In the ramp-up, increasing stratification and weakening of meridional overturning circulation slows ocean carbon and heat uptake. In the ramp-down, cooling accelerates meridional overturning and deepens vertical mixing, accelerating the release of carbon and heat stored at depth. Though idealized, our experiments offer insight into differences in ocean dynamics in icehouse and greenhouse climate transitions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-23
    Description: Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    IOP Publishing
    In:  Environmental Research Letters, 10 (7). 074009.
    Publication Date: 2019-08-19
    Description: Autotrophy is largely resource-limited in the modern ocean. Paleo evidence indicates this was not necessarily the case in warmer climates, and modern observations as well as standard metabolic theory suggest continued ocean warming could shift global ecology towards heterotrophy, thereby reducing autotrophic nutrient limitation. Such a shift would entail strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We demonstrate transition towards such a state in the early 22nd century as a response to business-as-usual representative concentration pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations; with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near-surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2–4${\;}^{\circ }{\rm{C}}$ global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IOP Publishing
    In:  Environmental Research Letters, 10 (9). 094001.
    Publication Date: 2017-04-12
    Description: While terrestrial precipitation is a societally highly relevant climate variable, there is little consensus among climate models about its projected 21st century changes. An important source of precipitable water over land is plant transpiration. Plants control transpiration by opening and closing their stomata. The sensitivity of this process to increasing CO2 concentrations is uncertain. To assess the impact of this uncertainty on future climate, we perform experiments with an intermediate complexity Earth System Climate Model (UVic ESCM) for a range of model-imposed transpiration-sensitivities to CO2. Changing the sensitivity of transpiration to CO2 causes simulated terrestrial precipitation to change by −10% to +27% by 2100 under a high emission scenario. This study emphasises the importance of an improved assessment of the dynamics of environmental impact on vegetation to better predict future changes of the terrestrial hydrological and carbon cycles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    IOP Publishing
    In:  Environmental Research Letters, 14 (10). Art.Nr. 104004.
    Publication Date: 2022-01-31
    Description: Intentionally removing carbon from the atmosphere with negative emission technologies (NETs) will be important to achieve net-zero emissions by mid-century and to limit global warming to 2 °C or even 1.5 °C (IPCC 2018). Model scenarios that consider NETs as part of mitigation pathways are still largely restricted to afforestation and bioenergy with carbon capture and storage (BECCS), while the '[f]easibility and sustainability of [NETs] use could be enhanced by a portfolio of options deployed at substantial, but lesser scales, rather than a single option at very large scale' (IPCC 2018, p 19). Here, we show the results from an anonymous expert survey, including 32 Earth-System-Model (ESM) experts and 18 Integrated-Assessment-Model (IAM) experts, about the role of NETs in future climate policies and about how well the various technologies are represented in current models. We find that they strongly support the view that technology portfolios are required to achieve negative emissions, however, the responses show that the number and range of NETs that can be assessed in IAMs is small and that IAMs and ESMs are rather applied to analyze technologies separately than in combination. IAM experts in particular consider BECCS as part of a future NETs portfolio; but at the same time, all experts judge the constraints BECCS would face regarding future overall feasibility and more particularly regarding resource competition to be the highest. Regarding the assessment of constraints the ESM experts are much more skeptical than the IAM experts; they also think that the BECCS carbon removal pathways are less sufficiently represented in ESMs compared to what the IAM experts thinks about the representation in their models. Despite the perceived need for NETs portfolios, the range of NETs which can be assessed in IAMs is rather small and ocean NETs have, so far, mostly been overlooked by the IAM experts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    IPCC
    In:  In: Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth : Assessment Report of the Intergovernmental Panel on Climate Change : Chapter 5. , ed. by Masson-Delmotte, V., Zhai, P., Pirani, A., Conners, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R. and Zhou, B. IPCC, Genf, Switzerland, pp. 1-221.
    Publication Date: 2022-01-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    IPCC
    In:  In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth : Assessment Report of the Intergovernmental Panel on Climate Change : Chapter 4. , ed. by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B. IPCC, Genf, Switzerland, pp. 1-195.
    Publication Date: 2022-01-05
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-22
    Description: Carbon dioxide removal (CDR) is discussed for offsetting residual greenhouse gas emissions or even reversing climate change. All emissions scenarios of the Intergovernmental Panel on Climate Change that meet the ‘well below 2 °C’ warming target of the Paris Agreement include CDR. Ocean alkalinity enhancement (OAE) may be one possible CDR where the carbon uptake of the ocean is increased by artificial alkalinity addition. Here, we investigate the effect of OAE on modelled carbon reservoirs and fluxes in two observationally-constrained large perturbed parameter ensembles. OAE is assumed to be technically successful and deployed as an additional CDR in the SSP5-3.4 temperature overshoot scenario. Tradeoffs involving feedbacks with atmospheric CO 2 result in a low efficiency of an alkalinity-driven atmospheric CO 2 reduction of −0.35 [−0.37 to −0.33] mol C per mol alkalinity addition (skill-weighted mean and 68% c.i.). The realized atmospheric CO 2 reduction, and correspondingly the efficiency, is more than two times smaller than the direct alkalinity-driven enhancement of ocean uptake. The alkalinity-driven ocean carbon uptake is partly offset by the release of carbon from the land biosphere and a reduced ocean carbon sink in response to lowered atmospheric CO 2 under OAE. In a second step we use the Bern3D-LPX model in CO 2 peak-decline simulations to address hysteresis and temporal lags of surface air temperature change (ΔSAT) in an idealized scenario where ΔSAT increases to ~2 °C and then declines to ~1.5 °C as result of CDR. ΔSAT lags the decline in CO 2 -forcing by 18 [14–22] years, depending close to linearly on the equilibrium climate sensitivity of the respective ensemble member. These tradeoffs and lags are an inherent feature of the Earth system response to changes in atmospheric CO 2 and will therefore be equally important for other CDR methods.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...