GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (4)
  • Co-Action Publishing  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2023-02-08
    Description: Sponges are the oldest known extant animal-microbe symbiosis. These ubiquitous benthic animals play an important role in marine ecosystems in the cycling of dissolved organic matter (DOM), the largest source of organic matter on Earth. The conventional view on DOM cycling through microbial processing has been challenged by the interaction between this efficient filter-feeding host and its diverse and abundant microbiome. Here we quantify, for the first time, the role of host cells and microbial symbionts in sponge heterotrophy. We combined stable isotope probing and nanoscale secondary ion mass spectrometry to compare the processing of different sources of DOM (glucose, amino acids, algal-produced) and particulate organic matter (POM) by a high-microbial abundance (HMA) and low-microbial abundance (LMA) sponge with single-cell resolution. Contrary to common notion, we found that both microbial symbionts and host choanocyte (i.e. filter) cells and were active in DOM uptake. Although all DOM sources were assimilated by both sponges, higher microbial biomass in the HMA sponge corresponded to an increased capacity to process a greater variety of dissolved compounds. Nevertheless, in situ feeding data demonstrated that DOM was the primary carbon source for both the LMA and HMA sponge, accounting for ~90% of their heterotrophic diets. Microbes accounted for the majority (65–87%) of DOM assimilated by the HMA sponge (and ~60% of its total heterotrophic diet) but 〈5% in the LMA sponge. We propose that the evolutionary success of sponges is due to their different strategies to exploit the vast reservoir of DOM in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 µm–0.5/1 mm), macrobenthos (250 µm–1 cm), and megabenthos (〉1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and meta-analyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m2 and as abundance records as individuals per m2. This database provides a point of reference for future studies on the distribution and biomass of benthic fauna.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-03
    Description: Sediment community oxygen consumption (SCOC) rates provide important information about biogeochemical processes in marine sediments and the activity of benthic microorganisms and fauna. Therefore, several databases of SCOC data have been compiled since the mid-1990s. However, these earlier databases contained much less data records and were not freely available. Additionally, the databases were not transparent in their selection procedure, so that other researchers could not assess the quality of the data. Here, we present the largest, best documented, and freely available database of SCOC data compiled to date. The database is comprised of 3,540 georeferenced SCOC records from 230 studies that were selected following the procedure for systematic reviews and meta-analyses. Each data record states whether the oxygen consumption was measured ex situ or in situ , as total oxygen uptake, diffusive or advective oxygen uptake, and which measurement device was used. The database will be curated and updated annually to secure and maintain an up-to-date global database of SCOC data.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Polymetallic nodule fields provide hard substrate for sessile organisms on the abyssal seafloor between 3000 and 6000 m water depth. Deep-seabed mining targets these mineral-rich nodules and will likely modify the consumer-resource (trophic) and substrate-providing (non-trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food-web integrity remains unclear. Here, we use seafloor imagery and published literature to develop highly-resolved trophic and non-trophic interaction webs for the Clarion-Clipperton Fracture Zone (CCZ, central Pacific Ocean) and the Peru Basin (PB, South-East Pacific Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock-down effects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identified stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food-web integrity and that their absence will likely result in reduced local benthic biodiversity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-11
    Description: On-going climate warming is causing a dramatic loss of sea-ice in the Arctic Ocean and it is projected that the Arctic Ocean will become seasonally ice-free by 2040. Many studies of local Arctic food webs now exist and with this review paper we aim to synthesize these into a large-scale assessment of the current status of knowledge on the structure of various Arctic marine food webs, and their response to climate change, and to sea-ice retreat in particular. Key drivers of ecosystem change and potential consequences for ecosystem functioning and Arctic marine food webs are identified along the sea-ice gradient with special emphasis on the following regions: seasonally ice free Barents and Chukchi Seas, loose ice pack zone of the Polar Front (PF) and Marginal Ice Zone (MIZ), and permanently sea-ice covered high Arctic. Finally, we identify gaps existing in the knowledge of different Arctic marine food webs and provide recommendations for future studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...