GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 436 (2005), S. 989-992 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The geochemical composition of the Earth's upper mantle is thought to reflect 4.5 billion years of melt extraction, as well as the recycling of crustal materials. The fractionation of rhenium and osmium during partial melting in the upper mantle makes the Re–Os isotopic system well ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Sponges are the oldest known extant animal-microbe symbiosis. These ubiquitous benthic animals play an important role in marine ecosystems in the cycling of dissolved organic matter (DOM), the largest source of organic matter on Earth. The conventional view on DOM cycling through microbial processing has been challenged by the interaction between this efficient filter-feeding host and its diverse and abundant microbiome. Here we quantify, for the first time, the role of host cells and microbial symbionts in sponge heterotrophy. We combined stable isotope probing and nanoscale secondary ion mass spectrometry to compare the processing of different sources of DOM (glucose, amino acids, algal-produced) and particulate organic matter (POM) by a high-microbial abundance (HMA) and low-microbial abundance (LMA) sponge with single-cell resolution. Contrary to common notion, we found that both microbial symbionts and host choanocyte (i.e. filter) cells and were active in DOM uptake. Although all DOM sources were assimilated by both sponges, higher microbial biomass in the HMA sponge corresponded to an increased capacity to process a greater variety of dissolved compounds. Nevertheless, in situ feeding data demonstrated that DOM was the primary carbon source for both the LMA and HMA sponge, accounting for ~90% of their heterotrophic diets. Microbes accounted for the majority (65–87%) of DOM assimilated by the HMA sponge (and ~60% of its total heterotrophic diet) but 〈5% in the LMA sponge. We propose that the evolutionary success of sponges is due to their different strategies to exploit the vast reservoir of DOM in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: LeKieffre, Charlotte; Spero, Howard J; Russell, Ann D; Fehrenbacher, Jennifer; Geslin, Emmanuelle; Meibom, Anders (2018): Assimilation, translocation, and utilization of carbon between photosynthetic symbiotic dinoflagellates and their planktic foraminifera host. Marine Biology, 165(6), https://doi.org/10.1007/s00227-018-3362-7
    Publication Date: 2023-01-13
    Description: Here we performed pulse-chase experiments with 13C-enriched dissolved inorganic carbon, followed by TEM and quantitative NanoSIMS isotopic imaging to visualize photosynthetic C assimilation by individual symbiotic dinoflagellates and subsequent translocation to their Orbulina universa host. NanoSIMS image processing was carried out as described in LeKieffre et al. (2017) and Nomaki et al. (2018). Briefly, TEM images were aligned with corresponding NanoSIMS 12C14N- images (Online Resource 1) using the software Look@NanoSIMS (Polerecky et al. 2012), which allows a user to hand-draw regions of interest (ROIs) corresponding to different organelles (e.g., dinoflagellate starch grains, foraminiferal lipid droplets, and fibrillar bodies). For each type of organelle and each time point, the average 13C-enrichment and its standard deviation were calculated based on 3 replicate foraminifera (except for the 6 h and 30 h time points, where only 2 replicates were available). The ROIs drawn on TEM images were also used to assess the relative abundance (in %) of lipid droplets in the foraminiferal endoplasm and starch grains in the dinoflagellate cytoplasm, respectively. Lipid droplet abundance was determined as the number of pixels occupied by lipid droplets divided by the total number of pixels of foraminiferal endoplasm. Starch grain abundance was determined as the number of pixels of occupied by starch grains divided by the total number of pixels covering dinoflagellate cytoplasm.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 277.1 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gibbin, Emma M; Gavish, Assaf; Krueger, Thomas; Kramarsky-Winter, Esti; Shapiro, Orr; Guiet, Romain; Jensen, Louise; Vardi, Assaf; Meibom, Anders (2018): Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. The ISME Journal, https://doi.org/10.1038/s41396-018-0327-2
    Publication Date: 2023-12-23
    Description: We conducted two isotope experiments (described in Gibbin et al. 2018) to determine how the presence of pathogens influences resource partitioning in the coral holobiont. Specifically, we quantified: 1) 13C-assimilation in Symbiodinium and the amount of 13C-labelled photosynthates that are assimilated by the host; 2) the metabolic turnover of 13C in Symbiodinium and in their host and 3) the incorporation of bacterial-derived N within the tissues of the coral holobiont. NanoSIMS images (either 40×40 or 50×50 µm in size) were obtained by rasterizing a 16 keV Cs+ primary ion beam, focused to a spot-size of 150 nm, across the sample surface. Settings (dwell time = 5 ms; number of pixels = 256×256, layers = 5) were kept constant between images. Data was extracted from drift-corrected images using L'IMAGE (Dr. Larry Nittler, Carnegie Institution of Washington). Regions of interest (ROIs) were drawn around individual symbiont cells and the host gastrodermis (excluding symbionts), using the contour lines on the 12C14N- image. These ROIs were then used to quantify the average enrichment of 13C and 15N in each partner. Our measured values are expressed as Atom Percent Excess (APE, in %).
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 47.6 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Krief, Shani; Hendy, Erica J; Fine, M; Yam, Ruth; Meibom, Anders; Foster, Gavin L; Shemesh, Aldo (2010): Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochimica et Cosmochimica Acta, 74, 4988–5001, https://doi.org/10.1016/j.gca.2010.05.023
    Publication Date: 2024-03-15
    Description: Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (omega arag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistilata, exposed to high pCO2(or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistilata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHTvalues of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater omega arag 〈1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C) and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of delta11B depletion and delta18O enrichment under reduced pH, whereas the delta13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal delta11B values plot above seawater delta11B vs. pH borate fractionation curves calculated using either the theoretically derived deltaB value of 1.0194 (Kakihana et al., Bull. Chem. Soc. Jpn. 50(1977), 158) or the empirical deltaB value of 1.0272 (Klochko et al., EPSL 248 (2006), 261). However, the effective deltaB must be greater than 1.0200 in order to yield calculated coral skeletal delta11B values for pH conditions where omega arag 〉1. The delta11B vs. pH offset from the literature seawater delta11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal delta13C and delta18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeleton
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Buoyant weighing technique according to Davies (1989); Calcification/Dissolution; Calcification rate; Calcification rate, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll per zooxanthellae; Chlorophyll per zooxanthellae, standard deviation; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Continuous Flow Isotope Ratio Mass Spectrometry (CF/IRMS); Element analyser isotope ratio mass spectrometer (EA-IRMS); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; HOBO Pendant Temp/Light Data Loggers (Pocasset, MA, USA); Image analysis; Laboratory experiment; Light:Dark cycle; MC-ICP-MS Thermo-Finnigan Neptune; Measured; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, Electrode; Porites sp.; Protein per surface area; Protein per surface area, standard deviation; Radiation, photosynthetically active; Red Sea; Salinity; Single species; Species; Stylophora pistillata; Temperate; Temperature, water; Zooxanthellae, per protein content; Zooxanthellae per protein content, standard deviation; Zooxanthellae per surface area; Zooxanthellae per surface area, standard deviation; δ11B; δ11B, standard deviation; δ13C, dissolved inorganic carbon; δ13C, standard deviation; δ18O, standard deviation; δ18O, water
    Type: Dataset
    Format: text/tab-separated-values, 258 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Krueger, Thomas; Horwitz, Noa; Bodin, Julia; Giovani, Maria-Evangelia; Escrig, Stéphane; Meibom, Anders; Fine, Maoz (2017): Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. Royal Society Open Science, 4(5), 170038, https://doi.org/10.1098/rsos.170038
    Publication Date: 2024-03-20
    Description: Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1-2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates; Carbohydrates, per cell; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Catalase activity, unit per protein mass; Chlorophyll a per cell; Chlorophyll c2/chlorophyll a ratio; Chlorophyll c2 per cell; Chlorophyll total, areal concentration; Chlorophyll total, per cell; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis/respiration ratio; Gross photosynthesis rate, oxygen; Growth/Morphology; Initial slope of rapid light curve; Laboratory experiment; Light saturation point; Maximal electron transport rate, relative; Maximum photochemical quantum yield of photosystem II; Net photosynthesis rate, oxygen; Net photosynthesis rate, oxygen, per chlorophyll a; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Primary production/Photosynthesis; Protein per cell; Protein per surface area; Red Sea; Registration number of species; Replicate; Respiration; Respiration rate, oxygen; Salinity; Single species; Species; Stylophora pistillata; Superoxide dismutase activity, unit per protein mass; Surface area; Symbiont cell density; Temperate; Temperature; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1800 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The Mg/ Ca ratio of Foraminifera calcium carbonate tests is used as proxy for seawater temperature and widely applied to reconstruct global paleo-climatic changes. However, the mechanisms involved in the carbonate biomineralization process are poorly understood. The current paradigm holds that calcium ions for the test are supplied primarily by endocytosis of seawater. Here, we combine confocal-laser scanning-microscopy observations of a membrane-impermeable fluorescent marker in the extant benthic species Ammonia aomoriensis with dynamic 44Calabeling and NanoSIMS isotopic imaging of its test. We infer that Ca for the test in A. aomoriensis is supplied primarily via trans-membrane transport, but that a small component of passively transported (e.g., by endocytosis) seawater to the site of calcification plays a key role in defining the trace-element composition of the test. Our model accounts for the full range of Mg/ Ca and Sr / Ca observed for benthic Foraminifera tests and predicts the effect of changing seawater Mg/ Ca ratio. This places foram-based paleoclimatology into a strong conceptual framework.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 10140, doi:10.1038/s41598-018-28455-1.
    Description: Haynesina germanica, an ubiquitous benthic foraminifer in intertidal mudflats, has the remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The photosynthetic functionality of these kleptoplasts has been demonstrated by measuring photosystem II quantum efficiency and O2 production rates, but the precise role of the kleptoplasts in foraminiferal metabolism is poorly understood. Thus, the mechanism and dynamics of C and N assimilation and translocation from the kleptoplasts to the foraminiferal host requires study. The objective of this study was to investigate, using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium, NH4+) in individuals of a kleptoplastic benthic foraminiferal species. H. germanica specimens were incubated for 20 h in artificial seawater enriched with H13CO3− and 15NH4+ during a light/dark cycle. All specimens (n = 12) incorporated 13C into their endoplasm stored primarily in the form of lipid droplets. A control incubation in darkness resulted in no 13C-uptake, strongly suggesting that photosynthesis is the process dominating inorganic C assimilation. Ammonium assimilation was observed both with and without light, with diffuse 15N-enrichment throughout the cytoplasm and distinct 15N-hotspots in fibrillar vesicles, electron-opaque bodies, tubulin paracrystals, bacterial associates, and, rarely and at moderate levels, in kleptoplasts. The latter observation might indicate that the kleptoplasts are involved in N assimilation. However, the higher N assimilation observed in the foraminiferal endoplasm incubated without light suggests that another cytoplasmic pathway is dominant, at least in darkness. This study clearly shows the advantage provided by the kleptoplasts as an additional source of carbon and provides observations of ammonium uptake by the foraminiferal cell.
    Description: This work was supported by the Swiss National Science Foundation (grant no. 200021_149333) and was part of the CNRS EC2CO-Lefe project ForChlo. It was also supported by the Region Pays de la Loire (Post-doc position of TJ, on FRESCO project) as well as the WHOI Robert W. Morse Chair for Excellence in Oceanography and The Investment in Science Fund at WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Micropaleontology 138 (2018): 12-32, doi:10.1016/j.marmicro.2017.10.005.
    Description: We report systematic transmission electron microscope (TEM) observations of the cellular ultrastructure of selected, small rotalid benthic foraminifera. Nine species from different environments (intertidal mudflat, fjord, and basin) were investigated: Ammonia sp., Elphidium oceanense, Haynesina germanica, Bulimina marginata, Globobulimina sp., Nonionellina labradorica, Nonionella sp., Stainforthia fusiformis and Buliminella tenuata. All the observed specimens were fixed just after collection from their natural habitats allowing description of intact and healthy cells. Foraminiferal organelles can be divided into two broad categories: (1) organelles that are present in all eukaryotes, such as the nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, and peroxisomes; and (2) organelles observed in all foraminifera but not common in all eukaryotic cells, generally with unknown function, such as fibrillar vesicles or electron-opaque bodies. Although the organelles of the first category were observed in all the observed species, their appearance varies. For example, subcellular compartments linked to feeding and metabolism exhibited different sizes and shapes between species, likely due to differences in their diet and/or trophic mechanisms. The organelles of the second category are common in all foraminiferal species investigated and, according to the literature, are frequently present in the cytoplasm of many different species, both benthic and planktonic. This study, thus, provides a detailed overview of the major ultrastructural components in benthic foraminiferal cells from a variety of marine environments, and also highlights the need for further research to better understand the function and role of the various organelles in these fascinating organisms.
    Description: This work was supported by the Swiss National Science Foundation (grant no. 200021_149333), The Investment in Science Fund at WHOI and the French national program EC2CO-LEFE (project ForChlo). TJ was funded by the “FRESCO” project, a project supported by the Region Pays de Loire and the University of Angers.
    Keywords: Protist ; Organelles ; TEM ; Cytology ; Mudflat ; Gullmar Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...