GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Chemistry 13 (2016): 302-313, doi:10.1071/EN15045.
    Description: Oceanic biogeochemical cycling of dimethylsulfide (DMS), and its precursor dimethylsulfoniopropionate (DMSP), has gained considerable attention over the past three decades because of the potential role of DMS in climate mediation. Here we report 3 years of monthly vertical profiles of organic sulfur cycle concentrations (DMS, particulate DMSP (DMSPp) and dissolved DMSP (DMSPd)) and rates (DMSPd consumption, biological DMS consumption and DMS photolysis) from the Bermuda Atlantic Time-series Study (BATS) site taken between 2005 and 2008. Concentrations confirm the summer paradox with mixed layer DMS peaking ~90 days after peak DMSPp and ~50 days after peak DMSPp : Chl. A small decline in mixed layer DMS was observed relative to those measured during a previous study at BATS (1992–1994), potentially driven by long-term climate shifts at the site. On average, DMS cycling occurred on longer timescales than DMSPd (0.43 ± 0.35 v. 1.39 ± 0.76 day–1) with DMSPd consumption rates remaining elevated throughout the year despite significant seasonal variability in the bacterial DMSP degrader community. DMSPp was estimated to account for 4–5 % of mixed layer primary production and turned over at a significantly slower rate (~0.2 day–1). Photolysis drove DMS loss in the mixed layer during the summer, whereas biological consumption of DMS was the dominant loss process in the winter and at depth. These findings offer new insight into the underlying mechanisms driving DMS(P) cycling in the oligotrophic ocean, provide an extended dataset for future model evaluation and hypothesis testing and highlight the need for a reexamination of past modelling results and conclusions drawn from data collected with old methodologies.
    Description: The authors acknowledge funding from the National Science Foundation (NSF) (OCE-0425166) and the Center for Microbial Oceanography Research and Education (CMORE) a NSF Science and Technology Center (EF-0424599).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: An insufficient supply of the micronutrient iron (Fe) limits phytoplankton growth across large parts of the ocean. Ambient Fe speciation and solubility are largely dependent on seawater physico-chemical properties. We calculated the apparent Fe solubility (SFe(III)app) at equilibrium for ambient conditions, where SFe(III)app is defined as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to organic matter formed at a free Fe3+ concentration equal to the solubility of Fe hydroxide. We compared the SFe(III)app to measured dissolved Fe (dFe) in the Atlantic and Pacific Oceans. The SFe(III)app was overall ∼2 to 4-fold higher than observed dFe at depths less than 1000 m, ∼2-fold higher than the dFe between 1000-4000 m and ∼3-fold higher than dFe below 4000 m. Within the range of used parameters, our results showed that there was a similar trend in the vertical distributions of horizontally averaged SFe(III)app and dFe. Our results suggest that vertical dFe distributions are underpinned by changes in SFe(III)app which are driven by relative changes in ambient pH and temperature. Since both pH and temperature are essential parameters controlling ambient Fe speciation, these should be accounted for in investigations of changing Fe dynamics, particularly in the context of ocean acidification and warming. Key Points Apparent iron solubility is driven by ambient pH, temperature (T) and dissolved organic carbon (DOC), and showed a 6-fold variation between surface (pH= 8.05 on the total scale, DOC= 71.8 µmol L-1, T= 20.4 °C) and deep oceanic waters (pH= 7.82, DOC= 38.6 µmol L-1, T= 1.1°C). Higher values of apparent iron solubility were determined for deep Atlantic and Pacific waters, with lower values in subtropical gyres. Calculated apparent iron solubility showed a similar trend in vertical distribution to dissolved iron, highlighting the importance of considering the impact of changes in ambient physico-chemical conditions on seawater iron chemistry.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...