GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (10)
Document type
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Land, Peter Edward; Findlay, Helen S; Shutler, Jamie D; Ashton, Ian G C; Holding, Thomas; Grouazel, Antoine; Girard-Ardhuin, Fanny; Reul, Nicolas; Piolle, Jean-Francois; Chapron, Bertrand; Quilfen, Yves; Bellerby, Richard G J; Bhadury, Punyasloke; Salisbury, Joseph; Vandemark, Doug; Sabia, Roberto (2019): Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal. Remote Sensing of Environment, 235, 111469, https://doi.org/10.1016/j.rse.2019.111469
    Publication Date: 2023-09-16
    Description: Published empirical algorithms for oceanic total alkalinity (TA) and dissolved inorganic carbon (DIC) are used with monthly sea surface salinity (SSS) and temperature (SST) derived from satellite (SMOS, Aquarius, SST CCI) and interpolated in situ (CORA) measurements and climatological (WOA) ancillary data to produce monthly maps of TA and DIC at one degree spatial resolution. Earth system model TA and DIC (HADGEM2-ES) are also included. Results are compared with in situ (GLODAPv2) TA and DIC and results analysed in five regions (global, Greater Caribbean, Amazon plume, Amazon plume with in situ SSS 〈 35 and Bay of Bengal). Results are presented in three versions, denoted by 'X' in the lists below: using all available data (X = ''); excluding data with bathymetry 〈 500m (X = 'Depth500'); excluding data with both bathymetry 〈 500m and distance from nearest coast 〈 300 km (X = 'Depth500Dist300'). Datasets S1 to S5 are .csv lists of matchups in each region - date and location, in situ TA and DIC measurements and estimated uncertainties, all input datasets, estimates of TA and DIC from all outputs, and the best available output estimates of TA and DIC for each matchup. S1_GlobalAlgorithmMatchupsX.csv S2_GreaterCaribbeanAlgorithmMatchupsX.csv S3_AmazonPlumeAlgorithmMatchupsX.csv S4_AmazonPlumeLowSAlgorithmMatchupsX.csv S5_BayOfBengalAlgorithmMatchupsX.csv Datasets S6 to S10 are .csv statistical analyses of the performance of each combination of algorithm and input data - carbonate system variable, algorithm, input datasets used, (MAD, RMSD using all available data, output score, RMSD estimated from output score, output and in situ mean and standard deviation, correlation coefficient), all items in brackets presented both unweighted and weighted, number of matchups, number of potential matchups, matchup coverage, RMSD after subtraction of linear regression, percentage reduction in RMSD due to subtraction of linear regression and weighted score divided by number of matchups). S6_GlobalAlgorithmScoresX.csv S7_GreaterCaribbeanAlgorithmScoresX.csv S8_AmazonPlumeAlgorithmScoresX.csv S9_AmazonPlumeLowSAlgorithmScoresX.csv S10_BayOfBengalAlgorithmScoresX.csv Datasets S11 to S15 are zipped netCDF files containing error analyses of all outputs in each region, including the squared error of each output at each matchup, the weight of each squared error (1/squared uncertainty), weight * squared error, number of matchups available to each output, number of matchups available to each combination of two outputs, (score of each output in a given comparison of two outputs, overall output score and RMSD estimated from output score), all items in the last brackets presented both unweighted and weighted. S11_GlobalSquaredErrorsX.nc S12_GreaterCaribbeanSquaredErrorsX.nc S13_AmazonPlumeSquaredErrorsX.nc S14_AmazonPlumeLowSSquaredErrorsX.nc S15_BayOfBengalSquaredErrorsX.nc Datasets S16 to S20 are zipped netCDF files containing global maps of the mean and standard deviation of each of: in situ data; output data; output data - in situ data and number of matchups. Regional files show the same maps, but only including data within the region. S16_GlobalmapsX.nc S17_GreaterCaribbeanmapsX.nc S18_AmazonPlumemapsX.nc S19_AmazonPlumeLowSmapsX.nc S20_BayOfBengalmapsX.nc Datasets S21 and S22 are .csv files containing the effect on estimated RMSD of excluding various combinations of algorithms and/or inputs for TA and DIC in each region. For a given variable and region, the first line shows the algorithm, input data sources, estimated RMSD and bias of the output with lowest estimated RMSD. Subsequent lines show the effect of excluding combinations of algorithms and/or inputs, ordered first by the number of algorithms/inputs excluded (fewest first), then by effect on lowest estimated RMSD. So the first line(s) consist of the effects of excluding the best algorithm and each of the input sources to that algorithm, most important first. Each line consists of the item excluded, ratio of resulting estimated RMSD to original estimated RMSD, resulting bias and number of items excluded. Some exclusions are equivalent, for instance exclusion of WOA nitrate (the only nitrate source) is equivalent to excluding all algorithms using nitrate. Dataset S21 contains a comprehensive list of all possible exclusions, and so is rather hard to read and interpret. To mitigate this, Dataset S22 contains only those exclusion sets with effect greater than 1% and at least 0.1% greater than any subset of its exclusions. S21_importancesX.csv S22_importances2X.csv Dataset S23 is a .csv file containing like-for-like comparisons of RMSD between TA and DIC in each region. Bear in mind that the RMSD shown here is not the same as the estimated RMSD (RMSDe) shown elsewhere. S23_TA_DICcomparisonX.csv
    Keywords: Aquarius; Carbonate chemistry; CORA; Dissolved inorganic carbon; Earth observation; File content; File format; File name; File size; HadGEM2-ES; Ocean acidification; SMOS; Total alkalinity; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 345 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Area; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Breaking load; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Diameter; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Group; Growth/Morphology; Height; Height/width ratio; Identification; Incubation duration; Laboratory experiment; Lophelia pertusa; Mingulayreef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Peak area; Peak centre; Peak height; Percentage; pH; pH, standard deviation; Potentiometric titration; Ratio; Registration number of species; Replicate; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Thickness; Treatment; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 9135 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Collard, Marie; Rastrick, S P S; Calosi, Piero; Demolder, Yoann; Dille, Jean; Findlay, Helen S; Hall-Spencer, Jason M; Milazzo, Marco; Moulin, Laure; Widdicombe, Steve; Dehairs, Frank; Dubois, Philippe (2015): The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsv018
    Publication Date: 2024-03-15
    Description: Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Area; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Diameter; Echinodermata; Experiment; Field observation; Force; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hardness; Height; Identification; Laboratory experiment; Length; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Paracentrotus lividus; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Proportion; Replicate; Salinity; Second moment of area; Single species; Species; Temperate; Temperature; Temperature, water; Test set; Thickness; Treatment; Young's modulus
    Type: Dataset
    Format: text/tab-separated-values, 15451 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Venello, Theresa A; Calosi, Piero; Turner, Lucy M; Findlay, Helen S (2018): Overwintering individuals of the Arctic krill Thysanoessa inermis appear tolerant to short-term exposure to low pH conditions. Polar Biology, 41(2), 341-352, https://doi.org/10.1007/s00300-017-2194-0
    Publication Date: 2024-03-15
    Description: Areas of the Arctic Ocean are already experiencing seasonal variation in low pH/elevated pCO2and are predicted to be the most affected by future ocean acidification (OA). Krill play a fundamental ecological role within Arctic ecosystems, serving as a vital link in the transfer of energy from phytoplankton to higher trophic levels. However, little is known of the chemical habitat occupied by Arctic invertebrate species, and of their responses to changes in seawater pH. Therefore, understanding krill's responses to low pH conditions has important implications for the prediction of how Arctic marine communities may respond to future ocean change. Here, we present natural seawater carbonate chemistry conditions found in the late polar winter (April) in Kongsfjord, Svalbard (79°North) as well as the response of the Arctic krill, Thysanoessa inermis, exposed to a range of low pH conditions. Standard metabolic rate (measured as oxygen consumption) and energy metabolism markers (incl. adenosine triphosphate (ATP) and l-lactate) of T. inermis were examined. We show that after a 7 days experiment with T. inermis, no significant effects of low pH on MO2, ATP and l-lactate were observed. Additionally, we report carbonate chemistry from within Kongsfjord, which showed that the more stratified inner fjord had lower total alkalinity, higher dissolved inorganic carbon, pCO2 and lower pH than the well-mixed outer fjord. Consequently, our results suggest that overwintering individuals of T. inermis may possess sufficient ability to tolerate short-term low pH conditions due to their migratory behaviour, which exposes T. inermis to the naturally varying carbonate chemistry observed within Kongsfjord, potentially allowing T. inermis to tolerate future OA scenarios.
    Keywords: Adenosine 5-Triphosphate, standard deviation; Adenosine triphosphate, per wet mass; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arctic; Arthropoda; Bicarbonate ion; Body mass; Body mass, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Kongsfjord_centremost; Laboratory experiment; Lactate; Lactate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Other metabolic rates; Oxygen consumption, per mass; Oxygen consumption, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Potentiometric; Potentiometric titration; Registration number of species; Replicates; Respiration; Salinity; Salinity, standard deviation; Single species; Species; Temperature, water; Temperature, water, standard deviation; Thysanoessa inermis; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 172 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) studies to date have typically used stable open-ocean pH and CO2 values to predict the physiological responses of intertidal species to future climate scenarios, with few studies accounting for natural fluctuations of abiotic conditions or the alternating periods of emersion and immersion routinely experienced during tidal cycles. Here, we determine seawater carbonate chemistry and the corresponding in situ haemolymph acid–base responses over real time for two populations of mussel (Mytilus edulis) during tidal cycles, demonstrating that intertidal mussels experience daily acidosis during emersion. Using these field data to parameterize experimental work we demonstrate that air temperature and mussel size strongly influence this acidosis, with larger mussels at higher temperatures experiencing greater acidosis. There was a small interactive effect of prior immersion in OA conditions (pHNBS 7.7/pCO2 930 µatm) such that the haemolymph pH measured at the start of emersion was lower in large mussels exposed to OA. Critically, the acidosis induced in mussels during emersion in situ was greater (delta pH approximately 0.8 units) than that induced by experimental OA (ΔpH approximately 0.1 units). Understanding how environmental fluctuations influence physiology under current scenarios is critical to our ability to predict the responses of key marine biota to future environmental changes.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Experiment; Flag; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haemolymph, bicarbonate ion; Haemolymph, partial pressure of carbon dioxide; Haemolymph, pH; Haemolymph, total carbon dioxide; Laboratory experiment; Mollusca; Mytilus edulis; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Registration number of species; Salinity; Salinity, standard deviation; Shell length; Single species; Size; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Time of day; Treatment; Treatment: temperature; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 27588 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nunes, Joana; McCoy, Sophie J; Findlay, Helen S; Hopkins, Frances E; Kitidis, Vassilis; Queirós, Ana M; Rayner, Lucy; Widdicombe, Stephen (2016): Two intertidal, non-calcifying macroalgae (Palmaria palmata and Saccharina latissima) show complex and variable responses to short-term CO2 acidification. ICES Journal of Marine Science, 73(3), 887-896, https://doi.org/10.1093/icesjms/fsv081
    Publication Date: 2024-03-15
    Description: Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Ammonium; Aragonite saturation state; Area; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dimethylsulfoniopropionate; Duration, number of days; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross primary production of oxygen; Growth/Morphology; Height; Identification; Laboratory experiment; Macroalgae; Migration; Mount_Batten_OA; Net primary production of oxygen; Nitrate; Nitrate and Nitrite; Nitrite; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other metabolic rates; Palmaria palmata; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Phosphate; Plantae; Position; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Respiration; Respiration, oxygen; Rhodophyta; Saccharina latissima; Salinity; Salinity, standard deviation; Silicate; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 13295 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: The geological storage of carbon dioxide (CO2) is expected to be an important component of future global carbon emission mitigation, but there is a need to understand the impacts of a CO2 leak on the marine environment and to develop monitoring protocols for leakage detection. In the present study, sediment cores were exposed to CO2-acidified seawater at one of five pH levels (8.0, 7.5, 7.0, 6.5 and 6.0) for 10 weeks. A bloom of Spirulina sp. and diatoms appeared on sediment surface exposed to pH 7.0 and 7.5 seawater. Quantitative PCR measurements of the abundance of 16S rRNA also indicated an increase to the abundance of microbial 16S rRNA within the pH 7.0 and 7.5 treatments after 10 weeks incubation. More detailed analysis of the microbial communities from the pH 7.0, 7.5 and 8.0 treatments confirmed an increase in the relative abundance of Spirulina sp. and Navicula sp. sequences, with changes to the relative abundance of major archaeal and bacterial groups also detected within the pH 7.0 treatment. A decreased flux of silicate from the sediment at this pH was also detected. Monitoring for blooms of microphytobenthos may prove useful as an indicator of CO2 leakage within coastal areas.
    Keywords: 16S gene copy number per unit sediment mass; Alkalinity, total; Ammonia; Aragonite saturation state; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Core; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Nitrate; Nitrite; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Salinity; Silicate; Silicate, flux; Soft-bottom community; Temperate; Temperature, water; Time in weeks; Treatment: pH; Type; Western_English_Channel
    Type: Dataset
    Format: text/tab-separated-values, 1400 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mangan, Stephanie; Urbina, Mauricio A; Findlay, Helen S; Wilson, Rod W; Lewis, Ceri N (2017): Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis. Proceedings of the Royal Society B-Biological Sciences, 284(1865), 20171642, https://doi.org/10.1098/rspb.2017.1642
    Publication Date: 2024-03-20
    Description: Ocean acidification (OA) studies typically use stable open-ocean pH or CO2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid–base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid–base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haemolymph, bicarbonate ion; Haemolymph, bicarbonate ion, standard error; Haemolymph, partial pressure of carbon dioxide; Haemolymph, partial pressure of carbon dioxide, standard error; Haemolymph, pH; Haemolymph, pH, standard error; Laboratory experiment; Metabolic rate of oxygen; Metabolic rate of oxygen, standard error; Mollusca; Mytilus edulis; Neutral red retention, per protein; Neutral red retention per protein, stanard error; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Registration number of species; Respiration; Salinity; Salinity, standard deviation; Single species; Species; Starcross; Superoxide dismutase activity, standard error; Superoxide dismutase activity, unit per protein mass; Temperate; Temperature, water; Temperature, water, standard deviation; Thiobarbituric acid reactive substances; Thiobarbituric acid reactive substances, standard error; Time in hours; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1536 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...