GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1091–1110, https://doi.org/10.1175/JPO-D-21-0068.1.
    Description: Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.
    Description: This work was funded by NSF Grant 1736217 and would not have been possible without the help of Kirk O’Donnell, James Bennett, Noel Pelland, and all contributors to Deepglider development. We additionally thank the captain crew of the R/V Atlantic Explorer and the BATS team at the Bermuda Institute of Ocean Sciences, particularly Rod Johnson, as well as Seakeepers International for their professionalism, capability, and generous assistance in deploying and recovering gliders.
    Keywords: North Atlantic Ocean ; Eddies ; Mesoscale processes ; Turbulence ; Energy transport ; In situ oceanic observations ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marques, G. M., Loose, N., Yankovsky, E., Steinberg, J. M., Chang, C.-Y., Bhamidipati, N., Adcroft, A., Fox-Kemper, B., Griffies, S. M., Hallberg, R. W., Jansen, M. F., Khatri, H., & Zanna, L. NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. Geoscientific Model Development, 15(17), (2022): 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022.
    Description: We describe an idealized primitive-equation model for studying mesoscale turbulence and leverage a hierarchy of grid resolutions to make eddy-resolving calculations on the finest grids more affordable. The model has intermediate complexity, incorporating basin-scale geometry with idealized Atlantic and Southern oceans and with non-uniform ocean depth to allow for mesoscale eddy interactions with topography. The model is perfectly adiabatic and spans the Equator and thus fills a gap between quasi-geostrophic models, which cannot span two hemispheres, and idealized general circulation models, which generally include diabatic processes and buoyancy forcing. We show that the model solution is approaching convergence in mean kinetic energy for the ocean mesoscale processes of interest and has a rich range of dynamics with circulation features that emerge only due to resolving mesoscale turbulence.
    Description: This research has been supported by the US Department of Commerce (grant no. NA18OAR4320123), the Division of Ocean Sciences (grant nos. 1912420, 1912332, 1912357, 1912163, and 1912302), the Division of Atmospheric and Geospace Sciences (grant no. 1852977), and the Climate Program Office (grant nos. NA19OAR4310364, NA19OAR4310365, and NA19OAR4310366).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-15
    Description: Biodiversity generally increases productivity in ecosystems; however, this is mediated by the specific functional traits that come with biodiversity loss or gain and how these traits interact with environmental conditions. Most biodiversity studies evaluate the effects of species richness alone, despite our increasing understanding that intraspecific diversity can have equally strong impacts. Here, we manipulate both species richness and intraspecific richness (i.e., number of distinct strains) in marine diatom communities to explicitly test the relative importance of species and strain richness for biomass and trait diversity in six distinct temperature/nutrient environments. We show that species and strain richness both have significant effects on biomass and growth rates, but more importantly, they interact with each other, indicating that cross-species diversity effects depend on within-species diversity and vice versa. This intertwined relationship thus calls for more integrative approaches quantifying the relative importance of distinct biodiversity components and environmental context on ecosystem functioning.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...