GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Highlights: • We focus on ACC and Southern Ocean MOC during 1958–2007 in 17 CORE-II forced models. • Most CORE-II simulations are close to eddy saturation. • Most CORE-II simulations are far from showing signs of eddy compensation. • Constant in time or space k results in poor representation of mesoscale eddy effects. • MOC has larger sensitivity than ACC transport even in eddy saturated state. Abstract: In the framework of the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II), we present an analysis of the representation of the Antarctic Circumpolar Current (ACC) and Southern Ocean meridional overturning circulation (MOC) in a suite of seventeen global ocean–sea ice models. We focus on the mean, variability and trends of both the ACC and MOC over the 1958–2007 period, and discuss their relationship with the surface forcing. We aim to quantify the degree of eddy saturation and eddy compensation in the models participating in CORE-II, and compare our results with available observations, previous fine-resolution numerical studies and theoretical constraints. Most models show weak ACC transport sensitivity to changes in forcing during the past five decades, and they can be considered to be in an eddy saturated regime. Larger contrasts arise when considering MOC trends, with a majority of models exhibiting significant strengthening of the MOC during the late 20th and early 21st century. Only a few models show a relatively small sensitivity to forcing changes, responding with an intensified eddy-induced circulation that provides some degree of eddy compensation, while still showing considerable decadal trends. Both ACC and MOC interannual variabilities are largely controlled by the Southern Annular Mode (SAM). Based on these results, models are clustered into two groups. Models with constant or two-dimensional (horizontal) specification of the eddy-induced advection coefficient κ show larger ocean interior decadal trends, larger ACC transport decadal trends and no eddy compensation in the MOC. Eddy-permitting models or models with a three-dimensional time varying κ show smaller changes in isopycnal slopes and associated ACC trends, and partial eddy compensation. As previously argued, a constant in time or space κ is responsible for a poor representation of mesoscale eddy effects and cannot properly simulate the sensitivity of the ACC and MOC to changing surface forcing. Evidence is given for a larger sensitivity of the MOC as compared to the ACC transport, even when approaching eddy saturation. Future process studies designed for disentangling the role of momentum and buoyancy forcing in driving the ACC and MOC are proposed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs. OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo's global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-10
    Description: A series of idealised numerical simulations of dense water flowing down a broad uniform slope are presented, employing both a z-coordinate model (the MIT general circulation model) and an isopycnal coordinate model (the Hallberg Isopycnal Model). Calculations are carried out at several different horizontal and vertical resolutions, and for a range of physical parameters. A subset of calculations are carried out at very high resolution using the non-hydrostatic variant of the MITgcm. In all calculations dense water descends the slope while entraining and mixing with ambient fluid. The dependence of entrainment, mixing and down-slope descent on resolution and vertical coordinate are assessed. At very coarse resolutions the z-coordinate model generates excessive spurious mixing, and dense water has difficulty descending the slope. However, at intermediate resolutions the mixing in the z-coordinate model is less than found in the high-resolution non-hydrostatic simulations, and dense water descends further down the slope. Isopycnal calculations show less resolution dependence, although entrainment and mixing are both reduced slightly at coarser resolution. At intermediate resolutions the z-coordinate and isopycnal models produce similar levels of mixing and entrainment. These results provide a benchmark against which future developments in overflow entrainment parameterizations in both z-coordinate and isopycnal models may be compared.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-12
    Description: We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations
    Description: Published
    Description: Article 65
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 94 (2013): 1131–1144, doi:10.1175/BAMS-D-12-00100.1.
    Description: The recent retreat and speedup of outlet glaciers, as well as enhanced surface melting around the ice sheet margin, have increased Greenland's contribution to sea level rise to 0.6 ± 0.1 mm yr−1 and its discharge of freshwater into the North Atlantic. The widespread, near-synchronous glacier retreat, and its coincidence with a period of oceanic and atmospheric warming, suggests a common climate driver. Evidence points to the marine margins of these glaciers as the region from which changes propagated inland. Yet, the forcings and mechanisms behind these dynamic responses are poorly understood and are either missing or crudely parameterized in climate and ice sheet models. Resulting projected sea level rise contributions from Greenland by 2100 remain highly uncertain. This paper summarizes the current state of knowledge and highlights key physical aspects of Greenland's coupled ice sheet–ocean–atmosphere system. Three research thrusts are identified to yield fundamental insights into ice sheet, ocean, sea ice, and atmosphere interactions, their role in Earth's climate system, and probable trajectories of future changes: 1) focused process studies addressing critical glacier, ocean, atmosphere, and coupled dynamics; 2) sustained observations at key sites; and 3) inclusion of relevant dynamics in Earth system models. Understanding the dynamic response of Greenland's glaciers to climate forcing constitutes both a scientific and technological frontier, given the challenges of obtaining the appropriate measurements from the glaciers' marine termini and the complexity of the dynamics involved, including the coupling of the ocean, atmosphere, glacier, and sea ice systems. Interdisciplinary and international cooperation are crucial to making progress on this novel and complex problem.
    Description: 2014-02-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 657-670, doi:10.1175/2008BAMS2667.1.
    Description: Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
    Description: The Gravity Current Entrainment Climate Process Team was funded by NSF grants OCE-0336850 and OCE-0611572 and NOAA as a contribution to U.S.CLIVAR.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marques, G. M., Loose, N., Yankovsky, E., Steinberg, J. M., Chang, C.-Y., Bhamidipati, N., Adcroft, A., Fox-Kemper, B., Griffies, S. M., Hallberg, R. W., Jansen, M. F., Khatri, H., & Zanna, L. NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. Geoscientific Model Development, 15(17), (2022): 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022.
    Description: We describe an idealized primitive-equation model for studying mesoscale turbulence and leverage a hierarchy of grid resolutions to make eddy-resolving calculations on the finest grids more affordable. The model has intermediate complexity, incorporating basin-scale geometry with idealized Atlantic and Southern oceans and with non-uniform ocean depth to allow for mesoscale eddy interactions with topography. The model is perfectly adiabatic and spans the Equator and thus fills a gap between quasi-geostrophic models, which cannot span two hemispheres, and idealized general circulation models, which generally include diabatic processes and buoyancy forcing. We show that the model solution is approaching convergence in mean kinetic energy for the ocean mesoscale processes of interest and has a rich range of dynamics with circulation features that emerge only due to resolving mesoscale turbulence.
    Description: This research has been supported by the US Department of Commerce (grant no. NA18OAR4320123), the Division of Ocean Sciences (grant nos. 1912420, 1912332, 1912357, 1912163, and 1912302), the Division of Atmospheric and Geospace Sciences (grant no. 1852977), and the Climate Program Office (grant nos. NA19OAR4310364, NA19OAR4310365, and NA19OAR4310366).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J., Oke, P., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D. O., d'Ortenzio, F., Dall'Olmo, G., Desbruyeres, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C., Kang, K., Kolodziejczyk, N., Kortzinger, A., Le Traon, P., Lenn, Y., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C., Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A. F., Waterman, S., Watson, A., Wilson, C., Wong, A. P. S., Xu, J., & Yasuda, I. On the future of Argo: A global, full-depth, multi-disciplinary array. Frontiers in Marine Science, 6, (2019): 439, doi:10.3389/fmars.2019.00439.
    Description: The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.
    Description: DR, MS, and NZ were supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). WO, SJ, and SWi were supported by the US Argo Program through the NOAA Grant NA14OAR4320158 (CINAR). EuroArgo scientists were supported by the two grants: (1) AtlantOS funding by the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 633211 and (2) Monitoring the Oceans and Climate Change with Argo (MOCCA) Co-funded by the European Maritime and Fisheries Fund (EMFF) Project No. SI2.709624. This manuscript represents a contribution to the following research projects for HC, CaS, and FD: remOcean (funded by the European Research Council, grant 246777), NAOS (funded by the Agence Nationale de la Recherche in the frame of the French “Equipement d’avenir” program, grant ANR J11R107-F), AtlantOS (funded by the European Union’s Horizon 2020 Research and Innovation Programme, grant 2014-633211), and the BGC-Argo project funded by the CNES. DB was funded by the EU RINGO project (730944 H2020-INFRADEV-2016-1). RF was supported by the AGS-1835576. GCJ was supported by the Global Ocean Monitoring and Observing Program, National Oceanic and Atmospheric Administration (NOAA), U.S., and the Department of Commerce and NOAA Research. LT was funded under the SOCCOM Grant No. NSF PLR-1425989. VT’s contribution was supported by the French National Research Agency (ANR) through the EQUIPEX NAOS (Novel Argo Observing System) under the reference ANR-10-EQPX-40 and by the European H2020 Research and Innovation Programme through the AtlantOS project under the reference 633211. WW was supported by the Argo Poland program through the Ministry of Sciences and Higher Education Grant No. DIR/WK/2016/12. AmW was funded by the NSF-OCE1434722. K-RK is funded by the National Institute of Meteorological Sciences’ Research and Development Program “Development of Marine Meteorology Monitoring and Next-generation Ocean Forecasting System” under the grant KMA2018-00421. CSchmid is funded by NOAA/AOML and the US Argo Program through NOAA/OOMD. MBa is funded by NOAA/AOML.
    Keywords: Argo ; Floats ; Global ; Ocean ; Warming ; Circulation ; Temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...