GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-19
    Description: Cruise M160 is part of concerted MOSES/REEBUS Eddy Study featuring three major research expeditions (M156, M160, MSM104). It aims to develop both a qualitative and quantitative understanding of the role of physical-chemical-biological coupling in eddies for the biological pump. The study is part of the MOSES “Ocean Eddies” event chain, which follows three major hypotheses to be addressed by the MOSES/REEBUS field campaigns: (1) Mesoscale and sub-mesoscale eddies play an important role in transferring energy along the energy cascade from the large-scale circulation to dissipation at the molecular level. (2) Mesoscale and sub-mesoscale eddies are important drivers in determining onset, magnitude and characteristics of biological productivity in the ocean and contribute significantly to global primary production and particle export and transfer to the deep ocean. (3) Mesoscale and sub-mesoscale eddies are important for shaping extreme biogeochemical environments (e.g., pH, oxygen) in the oceans, thus acting as a source/sink function for greenhouse gases. In contrast to the other two legs, MOSES Eddy Study II during M160 did not include any benthic work but focused entirely on the pelagic dynamics within eddies. It accomplished a multi-disciplinary, multi-parameter and multi-platform study of two discrete cyclonic eddies in an unprecedented complexity. The pre-cruise search for discrete eddies suitable for detailed study during M160 had already started a few months prior to the cruise. Remote sensing data products (sea surface height, sea surface temperature, ocean color/chlorophyll a) were used in combination with eddy detection algorithms and numerical modelling to identify and track eddies in the entire eddy field off West Africa. In addition, 2 gliders and 1 waveglider had been set out from Mindelo/Cabo Verde for pre-cruise mapping of the potential working area north of the Cabo Verdean archipelago. At the start of M160, a few suitable eddies – mostly of cyclonic type – had been identified, some of which were outside the safe operation range of the motorglider plane. As technical problems delayed the flight operations, the first eddy (center at 14.5°N/25°W) for detailed study was chosen to the southwest of the island of Fogo. It was decided to carry out a first hydrographic survey there followed by the deployment of a suite of instruments (gliders, waveglider, floats, drifter short-term mooring). Such instrumented, we left this first eddy and transited – via a strong anticyclonic feature southwest of the island of Santiago – to the region northeast of the island of Sal, i.e. in the working range of the glider plane. During the transit, a full suite of underway measurements as well as CTD/RO section along 22°W (16°-18.5°N) were carried in search for sub-surface expressions of anticyclonic eddy features. In the northeast, we had identified the second strong cyclonic eddy (center at 18°N/22.5°W) which was chosen for detailed study starting with a complete hydrographic survey (ADCP, CTD/RO, other routine station work). After completion of the mesoscale work program, we identified a strong frontal region at the southwestern rim of the cyclonic eddy, which was chosen for the first sub-mesoscale study with aerial observation component. There, the first dye release experiment was carried out which consisted of the dye release itself followed by an intense multi-platforms study of the vertical and horizontal spreading of the initial dye streak. This work was METEOR-Berichte, Cruise M160, Mindelo – Mindelo, 23.11.2019 4 – 20.12.2019 supported and partly guided by aerial observation of the research motorglider Stemme, which was still somewhat compromised by technical issues and meteorological conditions (high cloud cover, Saharan dust event). Nevertheless, this first dye release experiment was successful and showed rapid movement of the dynamic meandering front. After completion of work on this second eddy and execution of a focused sampling program at the Cape Verde Ocean Observation, RV METEOR returned to the first eddy for continuation of the work started there in the beginning of the cruise. This was accompanied by a relocation of the airbase of Stemme from the international airport of Sal to the domestic airport of Fogo. The further execution of the eddy study at this first eddy, which again included a complete hydrographic survey followed by a mesoscale eddy study with dye release, was therefore possible with aerial observations providing important guidance for work on RV METEOR. Overall, M160 accomplished an extremely intense and complex work program with 212 instrument deployments during station work, 137 h of observation with towed instruments and a wide range of underway measurements throughout the cruise. Up to about 30 individually tracked platforms (Seadrones, glider, wavegliders, drifters, floats) were in the water at the same time providing unprecedented and orchestrated observation capabilities in an eddy. All planned work components were achieved and all working groups acquired the expected numbers of instrument deployments and sampling opportunities.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-01
    Description: The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the marine carbon cycle. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO2 concentration. Therefore, a central focus of marine organic geochemistry studies is to improve our understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what we can measure, both in terms of organic compound structural diversity and isotopic composition, and complementary molecular omics studies. Here we provide a brief overview of the autochthonous, allochthonous, and anthropogenic components comprising POC in the ocean. In addition, we highlight key needs for future research that will enable us to more effectively connect diverse data sources and link the identity and structural diversity of POC to its sources and transformation processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-27
    Description: The biological carbon pump is a critical component for uptake of carbon by the oceans. Most of this is mediated by gravitational sinking of particles and it is generally assumed that there is a positive relationship between sinking velocity and size of particle. Due to the difficulties inherent in measuring the sinking velocity of untouched and undamaged particles, the majority of studies have been based on artificial solid particles or laboratory generated marine snow formed from homogenous material, e.g. phytoplankton cultures. Here, we present results from a newly developed optical method that measures size and settling velocities of undisturbed in situ aggregates in the mesopelagic zone. The measurements were done at depths between 90 and 530 m throughout day and night. In total we measured 55 image sequences of aggregate size and sinking velocities, resulting in measurements of 1060 individual aggregates. Only 10 sequences showed significant correlations between aggregate size and sinking velocity. Furthermore, only 8 of the 10 significant correlations between size and settling were positive. Despite similar optical appearance, similar sized aggregates had different sinking velocities, suggesting that aggregates formed in situ are heterogeneous with different compositions, structure and densities. This complicates estimates of sinking velocity from aggregate size only and one has to be careful when estimating downward particle flux based on in situ size-distribution and abundance of aggregates and theoretical relationships between size and sinking velocity. Hence, this study forces the conclusion that estimates of downward particle flux which use particle size distributions must also include information about aggregate composition, compactness and density from in situ optics or direct particle and aggregate sampling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-14
    Description: Submesoscale eddies and fronts are important components of oceanic mixing and energy fluxes. These phenomena occur in the surface ocean for a period of several days, on scales between a few hundred meters and few tens of kilometers. Remote sensing and modeling suggest that eddies and fronts may influence marine ecosystem dynamics, but their limited temporal and spatial scales make them challenging for observation and in situ sampling. Here, the study of a submesoscale filament in summerly Arctic waters (depth 0–400 m) revealed enhanced mixing of Polar and Atlantic water masses, resulting in a ca. 4 km wide and ca. 50 km long filament with distinct physical and biogeochemical characteristics. Compared to the surrounding waters, the filament was characterized by a distinct phytoplankton bloom, associated with depleted inorganic nutrients, elevated chlorophyll a concentrations, as well as twofold higher phyto- and bacterioplankton cell abundances. High-throughput 16S rRNA gene sequencing of bacterioplankton communities revealed enrichment of typical phytoplankton bloom-associated taxonomic groups (e.g., Flavobacteriales) inside the filament. Furthermore, linked to the strong water subduction, the vertical export of organic matter to 400 m depth inside the filament was twofold higher compared to the surrounding waters. Altogether, our results show that physical submesoscale mixing can shape distinct biogeochemical conditions and microbial communities within a few kilometers of the ocean. Hence, the role of submesoscale features in polar waters for surface ocean biodiversity and biogeochemical processes need further investigation, especially with regard to the fate of sea ice in the warming Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-07
    Description: The ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-15
    Description: Over the past decades, two key grazers in the Southern Ocean (SO), krill and salps, have experienced drastic changes in their distribution and abundance, leading to increasing overlap of their habitats. Both species occupy different ecological niches and long-term shifts in their distributions are expected to have cascading effects on the SO ecosystem. However, studies directly comparing krill and salps are lacking. Here, we provide a direct comparison of the diet and fecal pellet composition of krill and salps using 18S metabarcoding and fatty acid markers. Neither species’ diet reflected the composition of the plankton community, suggesting that in contrast to the accepted paradigm, not only krill but also salps are selective feeders. Moreover, we found that krill and salps had broadly similar diets, potentially enhancing the competition between both species. This could be augmented by salps’ ability to rapidly reproduce in favorable conditions, posing further risks to krill populations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Orenstein, E., Ayata, S., Maps, F., Becker, É., Benedetti, F., Biard, T., Garidel‐Thoron, T., Ellen, J., Ferrario, F., Giering, S., Guy‐Haim, T., Hoebeke, L., Iversen, M., Kiørboe, T., Lalonde, J., Lana, A., Laviale, M., Lombard, F., Lorimer, T., Martini, S., Meyer, A., Möller, K.O., Niehoff, B., Ohman, M.D., Pradalier, C., Romagnan, J.-B., Schröder, S.-M., Sonnet, V., Sosik, H.M., Stemmann, L.S., Stock, M., Terbiyik-Kurt, T., Valcárcel-Pérez, N., Vilgrain, L., Wacquet, G., Waite, A.M., & Irisson, J. Machine learning techniques to characterize functional traits of plankton from image data. Limnology and Oceanography, 67(8), (2022): 1647-1669, https://doi.org/10.1002/lno.12101.
    Description: Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.
    Description: SDA acknowledges funding from CNRS for her sabbatical in 2018–2020. Additional support was provided by the Institut des Sciences du Calcul et des Données (ISCD) of Sorbonne Université (SU) through the support of the sponsored junior team FORMAL (From ObseRving to Modeling oceAn Life), especially through the post-doctoral contract of EO. JOI acknowledges funding from the Belmont Forum, grant ANR-18-BELM-0003-01. French co-authors also wish to thank public taxpayers who fund their salaries. This work is a contribution to the scientific program of Québec Océan and the Takuvik Joint International Laboratory (UMI3376; CNRS - Université Laval). FM was supported by an NSERC Discovery Grant (RGPIN-2014-05433). MS is supported by the Research Foundation - Flanders (FWO17/PDO/067). FB received support from ETH Zürich. MDO is supported by the Gordon and Betty Moore Foundation and the U.S. National Science Foundation. ECB is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under the grant agreement no. 88882.438735/2019-01. TB is supported by the French National Research Agency (ANR-19-CE01-0006). NVP is supported by the Spanish State Research Agency, Ministry of Science and Innovation (PTA2016-12822-I). FL is supported by the Institut Universitaire de France (IUF). HMS was supported by the Simons Foundation (561126) and the U.S. National Science Foundation (CCF-1539256, OCE-1655686). Emily Peacock is gratefully acknowledged for expert annotation of IFCB images. LS was supported by the Chair VISION from CNRS/Sorbonne Université.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cael, B. B., Bisson, K., Conte, M., Duret, M. T., Follett, C. L., Henson, S. A., Honda, M. C., Iversen, M. H., Karl, D. M., Lampitt, R. S., Mouw, C. B., Muller-Karger, F., Pebody, C. A., Smith, K. L., & Talmy, D. Open ocean particle flux variability from surface to seafloor. Geophysical Research Letters, 48(9), (2021): e2021GL092895, https://doi.org/10.1029/2021GL092895.
    Description: The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log-normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log-normal probability distribution propagates into the variations of near-seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep-sea particle fluxes at subtropical and temperate time-series sites follow the same log-normal probability distribution, strongly suggesting the log-normal description is robust and applies on multiple scales. This log-normality implies that 29% of the highest measurements are responsible for 71% of the total near-seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep-sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.
    Description: B. B. Cael and S. A. Henson acknowledge support from the National Environmental Research Council (NE/R015953/1) and the Horizon 2020 Framework Programme (820989, project COMFORT). The work reflects only the authors' views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. S. A. Henson also acknowledges support from a European Research Council Consolidator grant (GOCART, agreement number 724416). C. L. Follett acknowledges support from the Simons Foundation (grants #827829 and #553242). M. H. Iversen acknowledges support from the DFG-Research Center/Cluster of Excellence “The Ocean Floor – Earth's Uncharted Interface”: EXC-2077-390741603 and the HGF Young Investigator Group SeaPump “Seasonal and regional food web interactions with the biological pump”: VH-NG-1000. M. C. Honda acknowledges financial support from the Ministry of Education, Culture, Sports, Science, and Technology – Japan (grants #: KAKENHI JP18H04144 and JP19H05667). M. Conte acknowledges support from the US National Science Foundation, Division of Ocean Sciences for support for the Oceanic Flux Program time-series since inception, most recently by NSF OCE grant 1829885. D. M. Karl acknowledges support from the Gordon and Betty Moore Foundation (#3794) and the Simons Foundation (SCOPE #329108).
    Keywords: Ballast ; bathypelagic ; biogeochemistry ; log-normal ; particle flux ; variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg, R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Boettcher, B., Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., & Mohr, W. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Frontiers in Marine Science, 7, (2020): 518, doi:10.3389/fmars.2020.00518.
    Description: The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the marine carbon cycle. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO2 concentration. Therefore, a central focus of marine organic geochemistry studies is to improve our understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what we can measure, both in terms of organic compound structural diversity and isotopic composition, and complementary molecular omics studies. Here we provide a brief overview of the autochthonous, allochthonous, and anthropogenic components comprising POC in the ocean. In addition, we highlight key needs for future research that will enable us to more effectively connect diverse data sources and link the identity and structural diversity of POC to its sources and transformation processes.
    Description: We thank the Hanse Institute for Advanced Studies (HWK) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 422798570, as well as the Geochemical Society, for funding which made the workshop possible. CA was additionally supported by OCE-1736772. BV was additionally supported by NSF OCE-1756254.
    Keywords: Marine particles ; Water column ; Phytoplankton ; Marine microbes ; Structural analysis ; Organic matter characterization ; Biomarkers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...