GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Scaling (Social sciences). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (514 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323907668
    Serie: Advances in Green and Sustainable Chemistry Series
    DDC: 541.37
    Sprache: Englisch
    Anmerkung: Intro -- Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial electrochemical systems -- 1.1. Introduction -- 1.2. Classification of METs -- 1.2.1. Microbial fuel cells (MFCs) -- 1.2.2. Microbial electrolysis cells (MECs) -- 1.2.3. Microbial solar cells (MSCs) -- 1.2.4. Microbial electrosynthesis cells (MESCs) -- 1.2.5. Microbial desalination cells (MDCs) -- 1.3. Conclusion -- Acknowledgments -- References -- Chapter 2: A review on scaling-up of microbial fuel cell: Challenges and opportunities -- 2.1. Introduction -- 2.2. MFC theory -- 2.3. Research gap of MFC -- 2.4. Operational and electrochemical limitations of MFC analysis -- 2.4.1. MFC start-up process -- 2.4.2. Wastewater -- 2.4.3. Electrode materials -- 2.4.4. Anode material -- 2.4.5. Cathode material -- 2.4.6. Design of MFC -- 2.4.7. Electrical network of MFC -- 2.5. Technology development solution -- 2.6. Techno-economic viability -- 2.6.1. Advantages of MFC -- 2.7. Pilot scale to industrial scale of MFC -- 2.8. Application of microbial fuel cell to the social relevance -- 2.8.1. Electricity generation -- 2.8.2. Bio-hydrogen production -- 2.8.3. Wastewater treatment -- 2.8.4. Biosensor -- 2.8.5. Desalination plants -- 2.9. Recent developments -- 2.10. Future improvements -- 2.11. Conclusion -- References -- Chapter 3: Electroactive biofilm and electron transfer in microbial electrochemical systems -- 3.1. Introduction -- 3.2. Electroactive microorganisms (EAMs) -- 3.3. Formation of electroactive biofilms (EABFs) -- 3.3.1. Anodic EABFs -- 3.3.2. Cathodic EABFs -- 3.4. Electron transfer mechanism -- 3.4.1. Anodic electron transfer -- 3.4.2. Cathodic electron transfer -- 3.5. Effect of design, operational, and biological parameters on electroactivity of EABFs -- 3.5.1. Design parameters. , 3.5.1.1. Effect of electrode materials and their characteristics -- 3.5.1.2. Influence of applied voltage or potential -- 3.5.2. Operational parameters -- 3.5.2.1. Effect of substrate on EABFs -- 3.5.2.2. Effect of temperature on EABFs -- 3.5.2.3. Effect of pH on EABFs -- 3.5.3. Biological parameters -- 3.6. Genetic engineering: An approach to enhance exoelectrogenesis -- 3.7. Applications of EABFs -- 3.8. Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4: Role of electroactive biofilms in governing the performance of microbial electrochemical system -- 4.1. Introduction -- 4.2. Role of electroactive biofilms in MES -- 4.3. Strategies for development of EAB -- 4.3.1. Natural growth of EAB -- 4.3.2. Artificial induction of EAB -- 4.4. Microbes in EAB -- 4.4.1. Anodic EAB -- 4.4.1.1. Pure culture -- 4.4.1.2. Mixed culture -- 4.4.2. Cathodic EAB -- 4.5. Electron transfer in EAB -- 4.5.1. Direct ET -- 4.5.2. Indirect ET -- 4.6. Methods to study EAB -- 4.7. Dynamic of EAB application -- 4.8. Conclusion and future prospects -- References -- Chapter 5: Electroactive biofilm and electron transfer in the microbial electrochemical system -- 5.1. Introduction -- 5.2. Electroactive microorganism and biofilm formation -- 5.3. Factors affecting electroactive biofilm formation -- 5.3.1. System architecture -- 5.3.2. Biological parameters -- 5.3.3. Operating parameters -- 5.3.3.1. Effect of external resistance and redox potential -- 5.3.3.2. Substrate concentration and loading -- 5.3.3.3. Other factors (pH, temperature, oxygen, and shear rate) -- 5.4. Electron transfer mechanism in MES -- 5.4.1. Direct electron transfer from cell to the electrode -- 5.4.2. Mediated electron transfer -- 5.5. Tools and techniques to study electroactive biofilms and microbial community analysis -- 5.6. Conclusion and future prospects -- References. , Chapter 6: Electroactive biofilm and electron transfer in MES -- 6.1. Introduction -- 6.2. Electroactive biofilms (EABs) -- 6.3. Anodic electroactive biofilm -- 6.4. Cathodic electroactive biofilm -- 6.5. Mechanism of electron within anodic EAB -- 6.6. Mechanisms of electron transfer in cathodic EABs -- 6.7. Tools and techniques used to study EABs -- 6.8. Applications of EABs -- 6.9. Conclusion -- References -- Chapter 7: Bioelectroremediation of wastes using bioelectrochemical system -- 7.1. Introduction -- 7.2. Drawbacks of conventional bioremediation -- 7.3. Phytoremediation -- 7.4. BES for ground water remediation -- 7.5. Practical obstacles in GW remediation suggests BES application -- 7.6. In situ bioelectroremediation: Ideal step -- 7.7. Bioelectroremediation: Future perspectives -- 7.8. Conclusion -- References -- Chapter 8: Fiber-reinforced polymer (FRP) as proton exchange membrane (PEM) in single chambered microbial fuel cells (MFCs) -- 8.1. Introduction -- 8.2. Proton exchange membranes (PEM) -- 8.3. Present study -- 8.4. Designing and fabrication of single-chambered MFCs -- 8.5. Natural fiber-reinforced polymer (FRP) composite as PEM in MFCs -- 8.6. Substrates used in MFCs -- 8.7. Inocula used in MFCs -- 8.8. Experimental design -- 8.9. Results in terms of electricity generation -- 8.10. Results in terms of COD removal -- 8.11. Results of the comparison of different proton exchange membrane (PEM) used in MFC with commercially available PEM-b ... -- 8.12. Results in terms of electricity generation -- 8.13. Results in terms of COD removal -- 8.14. Conclusions -- References -- Chapter 9: Effects of biofouling on polymer electrolyte membranes in scaling-up of microbial electrochemical systems -- 9.1. Introduction -- 9.2. Causes of biofouling in polymer electrolyte membrane -- 9.3. Mechanism of polymer electrolyte membrane biofouling. , 9.4. Effects of biofouling on MES performance -- 9.5. Methods to analyze membrane biofouling -- 9.6. Challenges confronted in scaling-up of MES -- 9.7. Preventive measures of membrane biofouling -- 9.7.1. Pretreatment of PEMs -- 9.7.2. Surface coatings on PEM -- 9.7.3. Polymer electrolyte membrane composites -- 9.7.4. Quorum Quenching for membrane antifouling -- 9.8. Conclusion -- References -- Chapter 10: Advancement in electrode materials and membrane separators for scaling up of MES -- 10.1. Introduction -- 10.2. Designing of reactor to scale-up -- 10.3. Electrode modification in scaling-up of MES -- 10.4. Membrane separators in MES -- References -- Chapter 11: Scale-up of bioelectrochemical systems: Stacking strategies and the road ahead -- 11.1. Introduction -- 11.2. Scale-up: Issues and strategies -- 11.3. Stacking of BESs -- 11.4. Voltage reversal and prevention -- 11.5. Pilot-scale BESs for hydrogen/methane production -- 11.6. Scaled-up BESs for bioremediation -- 11.7. Conclusions and future perspective -- References -- Chapter 12: Application of microbial electrochemical system for industrial wastewater treatment -- 12.1. Introduction -- 12.2. Energy recovery in wastewater treatment systems -- 12.3. Industrial wastewater generation and the ecotoxicological impacts of the pollutants -- 12.3.1. Heavy metals -- 12.3.2. Emerging contaminants -- 12.4. Industrial wastewater treatment in microbial electrochemical systems -- 12.4.1. Microbial fuel cell -- 12.4.2. Microbial electrolysis cell -- 12.4.3. Microbial desalination cell -- 12.5. Recent advancements in scaling up microbial electrochemical systems -- 12.5.1. Design of MES used in scale-up applications -- 12.5.2. Influencing parameters related to scale up -- 12.5.3. Application of MES in industrial companies: Current status -- 12.5.4. Current challenges and future perspective. , 12.6. Economic and life cycle assessment -- 12.7. Conclusion -- References -- Chapter 13: Metabolic engineering and synthetic biology key players for improving efficacy of microbial fuel cell technology -- 13.1. Introduction -- 13.2. Classification or types and design of MFC for electricity generation -- 13.3. Molecular mechanisms of electron transfer by diverse microbial regimes or electrogens for MFC technology -- 13.4. Existing physical- and chemical-based approaches for improving the MFC performance -- 13.4.1. Anode and cathode modifications -- 13.5. Existing pitfalls or drawbacks of existing MFC technology -- 13.6. Metabolic engineering and synthetic biology impacts on improving MFC performance -- 13.7. Conclusion and future outlook -- Acknowledgment -- References -- Chapter 14: Microbial electrochemical platform: A sustainable workhorse for improving wastewater treatment and desalination -- 14.1. Introduction -- 14.2. Classification and general discussion about microbial electrochemical platform toward wastewater treatment and desa ... -- 14.3. Potential role of existing native microbial regime in wastewater treatment and desalination -- 14.4. Metabolic engineering and synthetic biology impacts on improving strains or M/Os to improve the performance of MES/ ... -- 14.5. Future outlook -- Acknowledgment -- References -- Chapter 15: Scaling-up of microbial electrochemical systems to convert energy from waste into power and biofuel -- 15.1. Introduction -- 15.2. Scale-up of MET from laboratory level to pilot level -- 15.2.1. Microbial fuel cell -- 15.2.2. Microbial electrolysis cell -- 15.2.3. Microbial electrosynthesis -- 15.2.4. Microbial desalination cell -- 15.3. Stacking of microbial electrochemical systems: A major perspective for scaling-up -- 15.3.1. Some case studies on large-scale implementation of MES. , 15.4. Continuous mode of operation of microbial electrochemical systems during scale-up.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Royal Society of Chemistry,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: Biological Treatment of Industrial Wastewater presents a comprehensive overview of the latest advances and trends in the use of bioreactors for treating industrial wastewater.
    Materialart: Online-Ressource
    Seiten: 1 online resource (456 pages)
    Ausgabe: 1st ed.
    ISBN: 9781839165405
    Serie: ISSN
    Sprache: Englisch
    Anmerkung: Intro -- HalfTitle -- Series Title -- Title -- Copyright -- Contents -- Chapter 1 Industrial Wastewater and Its Toxic Effects 1 -- 1.1 Introduction -- 1.2 Types of Wastewater -- 1.2.1 Stormwater Runoff Wastewater -- 1.2.2 Domestic Wastewater -- 1.2.3 Agricultural Wastewater -- 1.2.4 Industrial Wastewater -- 1.3 Major Pollutants of Industrial Wastewater -- 1.4 Toxic Effects of Industrial Wastewater -- 1.5 Treatment of Industrial Wastewater -- 1.5.1 Treatment of Wastewater Containing Heavy Metals -- 1.5.2 Treatment of Wastewater Containing Phenolic Compounds -- 1.5.3 Treatment of Wastewater Released from the Paper and Pulp Industry -- 1.5.4 Treatment of Wastewater Released from the Textile Industry -- 1.5.5 Treatment of Hypersaline Effluents -- 1.6 Conclusion -- References -- Chapter 2 Impact of Industrial Wastewater Discharge on the Environment and Human Health 15 -- 2.1 Introduction -- 2.2 General Environmental Pollutants -- 2.2.1 Chemical Pollutants -- 2.2.2 Microbial Pollutants -- 2.3 Ecological Implications and Health Impacts of Industrial Wastewater Discharge on the Environment: Water, Soil and Air -- 2.3.1 Ecotoxicological and Health Effects of PPCP on the Environment -- 2.3.2 Ecotoxicological and Health Effects of Heavy Metals on the Environment -- 2.3.3 Ecotoxicological and Health Effects of Nanoparticles on the Environment -- 2.3.4 Ecotoxicological and Health Effects of Microplastics on the Environment -- 2.4 Ecotoxicological and Health Effects of Bacteria in General, antibiotic‐resistant Bacteria, Parasites and Viruses on the Environment -- 2.5 Challenges and Future Perspectives -- References -- Chapter 3 Detrimental Effects of Industrial Wastewater on the Environment and Health 40 -- 3.1 Introduction -- 3.2 Toxic Effect of Heavy Metals -- 3.3 Toxic Effect of Antibiotics -- 3.4 Toxic Effect of Pesticides. , 3.5 Toxic Effect of Microplastics -- 3.6 Conclusion -- References -- Chapter 4 Treatment and Management Strategies for Industrial Wastewater 53 -- 4.1 Introduction -- 4.2 Wastewater From Industries, Its Characterization and Impacts -- 4.2.1 Pulp and Paper Industry -- 4.2.2 Textile Industry -- 4.2.3 Petrochemical Industries -- 4.2.4 Iron and Steel Industries -- 4.3 Laws and Regulations for Industrial Wastewater Treatment -- 4.4 Conventional Methods for Industrial Wastewater Treatment -- 4.4.1 Coagulation or Flocculation -- 4.4.2 Ion Exchange -- 4.4.3 Membrane Filtration -- 4.4.4 Advanced Oxidation Processes -- 4.5 Biological Methods for Industrial Wastewater Treatment -- 4.5.1 Aerobic Process -- 4.5.2 Anaerobic Process -- 4.6 Management Strategies for Industrial Wastewater Treatment -- 4.7 Conclusion -- References -- Chapter 5 Introduction to Industrial Wastewater and Allied Treatment Technologies 74 -- 5.1 Introduction -- 5.2 Sources of Industrial Wastewater -- 5.3 Treatment of Industrial Wastewater -- 5.3.1 Conventional Methods -- 5.3.2 Advanced Bioprocesses -- 5.4 Challenges in Watewater Treatments -- References -- Chapter 6 Bioreactors: A Biological and Bioengineering Prodigy 87 -- 6.1 Introduction -- 6.2 Understanding Bioreactors -- 6.3 Various Features and Types of Bioreactor -- 6.4 Modelling of a Bioreactor -- 6.4.1 Basic Modelling -- 6.4.2 Validation -- 6.4.3 Hybrid Models -- 6.4.4 Balance Regions -- 6.4.5 Bioreactor Fluid Dynamics -- 6.4.6 Bioreactor Operation -- 6.5 Scale-down and -up of a Bioreactor -- 6.5.1 Scale-down Phases 1, 2 and 3 -- 6.5.2 Scale-up -- 6.6 Recent Trends in the Application of Various Types of Bioreactor -- 6.7 Limitations and Future Prospects -- 6.8 Conclusion -- References -- Chapter 7 Challenges in Industrial Wastewater Treatment Using Biological Reactors 105 -- 7.1 Introduction. , 7.2 Industrial Wastewater Composition and Treatability -- 7.3 Biological Processes for Industrial Wastewater Treatment -- 7.3.1 Aerobic Biodegradation -- 7.3.2 Anaerobic Biodegradation -- 7.4 Advanced Biological Wastewater Treatment Technology -- 7.4.1 Membrane Bioreactors (MBRs) -- 7.4.2 Moving-bed Biofilm Reactor (MBBR) -- 7.4.3 Granular Sludge Technology (GST) -- 7.5 Challenges in Industrial Wastewater Treatment Using Biological Processes -- 7.5.1 Agrochemical Wastewater -- 7.5.2 Coal Gasification Wastewater -- 7.5.3 Dairy Wastewater -- 7.5.4 Electroplating Wastewater -- 7.5.5 Mustard Tuber Wastewater -- 7.5.6 Palm Oil Mill Wastewater -- 7.5.7 Pharmaceutical Wastewater -- 7.6 Summary -- References -- Chapter 8 Challenges in Designing and Operation of a Bioreactor for Treatment of Wastewater 131 -- 8.1 Introduction -- 8.2 Basics of a Bioreactor -- 8.2.1 Mode of Operation -- 8.2.2 Types of Bioreactor -- 8.3 Role of Bioreactors in Wastewater Treatment -- 8.3.1 Comparison of Conventional an Activated Sludge Processes and an MBR -- 8.4 Conceptual Design and Approaches for Bioreactor Design -- 8.4.1 Energy Recovery in MBRs -- 8.4.2 Treated Wastewaters from Membrane Bioreactors -- 8.4.3 Operating Conditions and Performance of Membrane Bioreactors -- 8.4.4 Membrane Materials and Modules Used in Membrane Bioreactors -- 8.4.5 Fluxes and Membrane Area of Membrane Bioreactors -- 8.4.6 Membrane Design -- 8.4.7 Design of an Aeration System -- 8.4.8 Cost Benefit Analysis -- 8.5 Challenges Associated with Design and Operation -- 8.5.1 Membrane Fouling -- 8.6 Fouling Control Strategies -- 8.6.1 Pretreatment of Feed Wastewater -- 8.6.2 Physical Cleaning and Backwashing -- 8.6.3 Cleaning -- 8.6.4 Membrane Surface Modification -- 8.6.5 Optimization and Enhancement of Aeration -- 8.6.6 Biological Control Techniques -- 8.7 Reuse and Recovery of Wastewater Using an MBR. , 8.8 Conclusion -- References -- Chapter 9 Different Types of Advanced Bioreactors for the Treatment of Industrial Effluents 157 -- 9.1 Introduction -- 9.1.1 Conventional Biological Treatments and Their Limitations -- 9.1.2 Advanced Bioprocesses and Available Reactor Designs -- 9.1.3 Aim and Objectives of the Chapter -- 9.2 Sequencing Batch Reactor for Effluent Treatment -- 9.3 Aerobic and Anaerobic Stirred-tank Bioreactors -- 9.4 Fixed- and Fluidized- Bed Bioreactor Designs -- 9.5 Membrane-based Technology and Other Possible Integration Approaches -- 9.6 Conclusions and Future Perspectives -- References -- Chapter 10 Membrane Bioreactors: An Advanced Technology to Treat Industrial Waste Water 174 -- 10.1 Introduction -- 10.2 Conventional Techniques for the Treatment of Industrial Waste Water -- 10.3 Advance Technologies for the Treatment of Industrial Waste Water -- 10.3.1 Advanced Oxidation Process (AOP) -- 10.3.2 UV Irradiation -- 10.3.3 Automatic Variable Filtration -- 10.3.4 Electrochemical Processes -- 10.3.5 Adsorption -- 10.3.6 Membrane Filtration -- 10.4 Membrane Bioreactor -- 10.4.1 Working Principles of MBRs -- 10.4.2 Choice of Membranes and Membrane Elements for MBRs -- 10.4.3 Types of MBR -- 10.4.4 Membrane Fouling and Its Control in an MBR -- 10.4.5 MBR vs CAS -- 10.4.6 Application of MBRs -- 10.5 Conclusion and Future Prospects -- References -- Chapter 11 Membrane Bioreactors for Industrial Wastewater Treatment 215 -- 11.1 Introduction -- 11.2 Basics of a Membrane Bioreactor -- 11.3 Limitations and Trouble-shooting of MBR Operation -- 11.4 Commercial MBR Plants and MBR Application in Industrial Sectors -- 11.5 Industrial Application of Membrane Bioreactors -- 11.5.1 Application of the Membrane Bioreactor in Food and Beverage Industries -- 11.5.2 Application of the Membrane Bioreactors in Pharmaceutical Industries. , 11.5.3 Application of the Membrane Bioreactor in Petrochemical Industries -- 11.5.4 Application of the Membrane Bioreactor in Textile Industries -- 11.5.5 Application of the Membrane Bioreactor in Paper-pulp and Tannery Industry -- 11.6 Future Prospects for Membrane Bioreactor Technology -- References -- Chapter 12 Investigation and Treatment of Industrial Wastewater by Membrane Bioreactors: An Innovative Approach 241 -- 12.1 Introduction -- 12.2 Process Description and Configuration of MBR -- 12.3 Effect of MBR on Microorganism and Pollutants and Reuse Options -- 12.4 The Quality of the Effluent Water after MBR Treatment -- 12.5 The Cost Associated with MBRs -- 12.6 Limitations and Advantages of Membrane Bioreactors -- 12.7 Advancement in MBR Technology -- 12.8 Conclusion -- References -- Chapter 13 Membrane Bioreactors for Separation of Persistent Organic Pollutants From Industrial Effluents 257 -- 13.1 Introduction -- 13.2 Sources and Toxicity of POPs -- 13.2.1 Occurrence of Micro-pollutants in Groundwater and Drinking Water -- 13.2.2 Impact of Micro-pollutants on the Environment -- 13.2.3 Toxicity Induced by Micro-pollutants -- 13.3 MBRs for Efficient Treatment of POPs -- 13.4 Major Processes of Pollutant Removal Occurring in MBRs -- 13.4.1 Sorption -- 13.4.2 Biodegradation -- 13.4.3 Stripping/Volatilization -- 13.5 Factors Affecting MBR Efficiency -- 13.5.1 Physicochemical Properties of POPs -- 13.5.2 Operating Conditions -- 13.6 Integrated MBR-based Processes -- 13.6.1 AOPs-MBR -- 13.6.2 Reverse Osmosis and Forward Osmosis Membrane Systems -- 13.6.3 Granular MBR -- 13.6.4 Membrane Distillation Bioreactor (MDBR) -- 13.6.5 Biofilm/Bio-entrapped Membrane Bioreactor -- 13.7 Membrane-based Separation of Treated Water from Mixed Liquor -- 13.7.1 Ultrafiltration Membranes -- 13.7.2 Nanofiltration Membranes. , 13.8 Different Tools for Process Optimization.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Microbiology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (246 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323986434
    Serie: Developments in Applied Microbiology and Biotechnology Series
    DDC: 780
    Sprache: Englisch
    Anmerkung: Front Cover -- Functional Metagenomics -- Functional Metagenomics: Microbial Diversity, Interaction, and Application in Bioremediation -- Copyright -- Contents -- Contributors -- 1 - Overcoming industrial challenges in microbial bioremediation: Leveraging modern technologies and sustainable pr ... -- 1. Introduction -- 2. Bioremediation processes -- 3. Advantages of bioremediation -- 4. Factors affecting the bioremediation process -- 5. Challenges in the bioremediation process -- 6. Addressing the challenges using modern technologies -- 7. Conclusion -- References -- 2 - Metagenomics: A new horizon for bioremediation in 21st century -- 1. Introduction -- 2. Environmental systems biology -- 3. Metagenomics -- 4. Metatranscriptomics and metaproteomics -- 5. Techniques to study metagenomics -- 5.1 Culture-dependent enrichment -- 6. Community profiling -- 7. Identifying genes and genomes mediating biodegradations -- 8. Industrial enzyme discovery using microbial metagenomics -- 9. Applications of metagenomics in bioremediation -- 10. Metagenomic bioremediation of different contaminations -- 11. Microbial metagenomics in agriculture -- 12. Environmental monitoring and bioremediation using microbial metagenomics -- 13. Recent advancements in technologies associated with metagenomics -- 14. Conclusions -- References -- 3 - Application of metagenomics in the field of biotechnological conversion of lignocellulosic residues -- 1. Introduction -- 2. Lignocellulosic biomass -- 2.1 Composition -- 2.2 Biotechnological potential of lignocellulosic residues -- 2.3 Microbial diversity in lignocellulosic residues -- 3. Metagenomic approach -- 3.1 Pretreatment of environmental samples -- 3.2 DNA extraction -- 3.3 Construction of metagenomic library -- 3.3.1 Vector selection -- 3.3.2 Host selection -- 3.4 Metagenomic library screening. , 3.4.1 Functional-based screening -- 3.4.2 Compound configuration screening -- 3.4.3 DNA sequence-based screening -- 4. Industrial property on new technologies involving metagenomic approaches -- 5. Conclusions -- References -- 4 - Metagenomics to unravel the microbial biodiversity and biotechnological potential of extreme high salinity envi ... -- 1. Introduction -- 2. Extreme environments and extremophiles -- 2.1 Extremophile (micro)organisms -- 3. Culture-independent approaches in the metagenomics era -- 3.1 Sequence-based metagenomics -- 3.2 Function-based metagenomics -- 3.3 Some challenges of metagenomics -- 4. Metagenomics as a tool to mine the biodiversity and biotechnological potential of extremophile communities -- 4.1 Novel extremophiles -- 4.2 New bioactive molecules -- 4.3 Novel genes -- 5. Metagenomics in hypersaline environments -- 5.1 High salinity environments -- 5.2 Metagenomics and biodiversity in high salinity environments -- 5.2.1 Novel phylogenetic groups -- 5.2.2 Novel taxa -- 5.2.3 Insight into halophilic viruses -- 5.3 Bioactive molecules of high salinity environments unveiled by metagenomics -- 5.3.1 Enzymes -- 5.3.2 Antimicrobial compounds -- 5.3.3 Biosurfactants -- 6. Concluding remarks -- References -- 5 - Analysis of complex microbial communities in soil and wastewater treatment processes -- 1. Introduction -- 2. Soil treatment with microbes -- 2.1 Microbial degradation of toxins in soil -- 2.2 Genetically modified bacteria for treatment of soil -- 2.3 Bioventing -- 2.4 Biosparging -- 2.5 Biostimulation -- 2.6 Bioaugmentation -- 3. Microbes in wastewater treatment -- 3.1 Wastewater microbial diversity -- 3.2 Bioremediation -- 3.3 Biofilm technology -- 3.4 Microbial fuel cell technology -- 4. Conclusion -- References -- Further reading -- 6 - Response of microbial communities to environmental changes -- 1. Introduction. , 2. Role of microbes in biogeochemicial cycle -- 2.1 Microbes in carbon cycle -- 2.2 Microbial role in nitrogen cycle -- 2.3 Methane cycle and microbial communities -- 3. Climate change and impact on microorganisms -- 3.1 Causes of climate change -- 3.2 Climate change's impact on microorganisms -- 3.3 Microbes adapting to environmental challenges -- 4. Conclusion -- References -- Further reading -- 7 - Gene prediction through metagenomics -- 1. Introduction -- 2. Overview of metagenomics -- 3. Sequencing the microbiome genome -- 3.1 Metagenomic data analysis -- 4. Gene prediction -- 4.1 Gene prediction methods -- 4.1.1 Sequence similarity-based searches -- 4.1.2 Ab initio method -- 5. Future prospects -- References -- Further reading -- 8 - Role of microbes in climate change and its impact: A critical review -- 1. Introduction -- 2. Microbiome in marine environment -- 2.1 Marine archaea -- 2.2 Extremophilic marine bacteria -- 2.3 Marine virus -- 2.4 Marine phytoplanktons -- 2.5 Marine mixoplanktons -- 2.6 Marine diatoms -- 2.7 Marine fungi -- 3. Effect of climate change on marine microbiota -- 4. Permafrost microbiome -- 4.1 Microbes and archaea -- 4.2 Virus -- 4.3 Algae -- 4.4 Fungi -- 5. Impact of climate change on permafrost microbiome -- 6. Terrestrial microbiome -- 6.1 Role of bacteria in biogeochemical cycle -- 7. Impact of climate change on terrestrial microbiome -- 8. Conclusion -- References -- 9 - Metagenomics approaches for microbiome analysis -- 1. Introduction -- 2. Diversity of gut microbiome -- 3. Functional metagenomics -- 4. Bioinformatics tools -- 5. Conclusion -- References -- Further reading -- 10 - Study of microbial communities in degrading toxic pollutants in the wastewater and solid waste treatment indus ... -- 1. Introduction -- 2. Waste generation -- 3. Types of toxic compounds -- 3.1 Organic pollutants. , 4. Inorganic pollutants -- 5. Microbial interaction with organic pollutant -- 6. Microbial communities with respect to degradation of organic compound -- 7. Structure and methods -- 7.1 Amplified ribosomal DNA restriction analysis -- 7.2 Terminal restriction length polymorphism: T-RFLP -- 7.3 Denaturing gradient gel electrophoresis -- 7.4 Ion torrent sequencing -- 7.5 Illumina sequencing -- 7.6 Quorum sensing system -- 8. Future perspectives -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- V -- W -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Pollution. ; Environmental chemistry. ; Environmental engineering. ; Biotechnology. ; Environmental health.
    Beschreibung / Inhaltsverzeichnis: Chapter 1. Bioremediation Approaches for Pulp and Paper Industry Wastewater Treatment: Recent Advances and Challenges -- Chapter 2. Microbial remediation of Heavy Metals -- Chapter 3. Dyes: effect on environment and biosphere and their remediation constrains -- Chapter 4. Microbial Bioremediation and Biodegradation of Hydrocarbons, Heavy Metals and Radioactive Wastes in solid and waste waters -- Chapter 5. Advancement of omics: Prospects for bioremediation of contaminated soils -- Chapter 6. Microbial biotransformation of hexavalent chromium Cr(VI) in tannery wastewater -- Chapter 7. Bio-remediation: A Low-Cost and Clean-Green Technology for Environmental Management -- Chapter 8. Microbial Degradation of Pharmaceuticals and Personal-care Products from Wastewater -- Chapter 9. Extremophiles; A powerful choice for bioremediation of toxic oxyanions -- Chapter 10. Conventional and non-conventional biodegradation technologies for agroindustrial liquid wastes management -- Chapter 11. White Rot Fungi: Nature’s Scavenger -- Chapter 12. Nanobioremediation: An emerging approach for a cleaner environment -- Chapter 13. Bioelectrochemical system for bioremediation and energy generation -- Chapter 14. Ligninolysis: Roles of Microbes and their Extracellular Enzymes -- Chapter 15. Biosorption of heavy metals by Cyanobacteria: potential of live and dead cells in bioremediation -- Chapter 16. Bioremediation of pharmaceuticals in water and wastewater -- Chapter 17. Bioremediation Of Saline Soil by Cynobacteria -- Chapter 18. Advancement in treatment technologies of Biopharmaceutical Industrial effluents -- Chapter 19. Marine Bacteria- A Storehouse of novel compounds for biodegradation -- Chapter 20. Energy-efficient anaerobic ammonia removal: from laboratory to full-scale application -- Chapter 21. Microbial degradation of natural and synthetic rubbers.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(IX, 550 p. 69 illus., 48 illus. in color.)
    Ausgabe: 1st ed. 2020.
    ISBN: 9789811518126
    Serie: Springer eBook Collection
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Schlagwort(e): Fungi-Biotechnology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (561 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128213957
    Sprache: Englisch
    Anmerkung: Front Cover -- Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology: Volume 1: Fungal Diversity of Sustainable Agriculture -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Endophytic fungi: A review of survival strategies that influence the biodiversity studies associated with biopotential pr... -- Introduction -- Importance to study the endophytic fungal diversity -- Fungal endophytes from subtropics and tropical regions -- Endophytes will be modern microbial technology to fulfill our societal needs -- Significance on understanding the modern era challenges -- Conclusion -- Acknowledgments -- References -- 2 Evaluation of phylloplane fungal flora and host plants in the Southern Western Ghats -- Scope of the study -- References -- 3 Fungal endophytes from seaweeds and bio-potential applications in agriculture -- Introduction -- Seaweeds -- Endophytic fungi -- Diversity of molecules produced by seaweed endophytic fungi -- Role of endophytic fungi in plant growth -- Seaweed endophytic fungi as phosphate solubilizers -- Seaweed endophytic fungi as potassium solubilizers -- Bioactive compounds -- Future perspectives -- Acknowledgments -- References -- 4 Fungal endophytes: Entry, establishment, diversity, future prospects in agriculture -- Introduction -- What are endophytes? -- How do these endophytes enter and establish inside the plants? -- How diverse these endophytes are? -- How these fungal endophytes can contribute to sustainable agriculture? -- Phosphate solubilization -- Conclusion -- References -- 5 Fungal endophytes, biodiversity and biopotential applications -- Introduction -- History and evolution of endophytic fungi -- Endophytic fungi -- Biodiversity of fungal endophytes in India -- Unique features of marine environment and their relevance to marine fungi -- Classification of endophytes. , Sponge associated fungal endophytes -- Bioactive compounds and their biopotential applications -- Primary and secondary metabolites -- Factors affecting the production of metabolites -- Future prospects -- References -- 6 The role of fungi in abiotic stress tolerance of plants -- Introduction -- Fungal symbiosis -- Types of fungal symbionts -- Role of fungus in various abiotic stress tolerance -- Salinity stress -- Endophytes -- Mycorrhiza -- Drought stress -- Endophyte -- Mycorrhiza -- Heavy metal stress -- Endophyte -- Mycorrhiza -- Temperature (heat and cold stress) -- Endophyte -- Mycorrhiza -- Conclusion -- References -- 7 Phytopathogenic fungi and their biocontrol applications -- Introduction -- Plant pathology -- Definition of plant pathology -- Plant pathologist -- Definition of disease -- The disease triangle -- Factors affecting disease development -- Pathogen factors -- Introduction of new pathogen -- Presence of aggressive strain of the pathogen -- High birth rate of the pathogen -- Low death rate -- Easy and rapid dispersal of the pathogen -- Adaptability of the pathogen -- Host factors -- Susceptibility of the host -- Aggregation and distribution of susceptible hosts -- Introduction of new host(s) -- Introduction of new collateral or alternate hosts -- Environmental factors -- Simple interest diseases -- Compound interest diseases -- The edaphic environment -- Interactions among factors -- Plant pathogens -- Classification of plant disease -- Fungi -- Phenomenon of infection - pre-penetration, penetration and post penetration -- Pre entry (pre-penetration) -- Entry (penetration) -- Colonization (post penetration) -- Pathogenesis - role of enzymes, toxins, growth regulators and polysaccharides -- Enzymes -- Cellulases -- Hemicellulases -- Ligninases -- Toxins as chemical weapons of pathogens -- Tabtoxin -- Phaseolotoxin -- Tentoxin. , Host-specific toxins -- T-toxin -- HC-toxin -- Growth regulators as weapons -- Auxins -- Gibberellins -- Ethylene -- General principles of plant diseases management - importance, general principles: avoidance, exclusion, eradication, protec... -- Biocontrol of plant disease -- Interactions between plants and beneficial microbes -- Biological control and PGPR -- Parasitism and lysis -- Antibiosis -- Competition -- Trichoderma viride -- Bacillus subtilis -- Pseudomonas fluorescens -- Plant products and antiviral principles in plant disease management -- Neem products -- Neem seed Kernel extract (NSKE) -- Neem oil solution -- Neem cake extract -- Neem cake -- Other plant products -- PGPR -- Disease control -- Ways that PGPR promote plant growth -- Anti-viral principle (AVP) -- Biotechnological developments -- Disease management by biotechnological methods -- Genetic engineering -- Vectors for transfer of genes -- DNA construction -- Coat-protein expression in transgenic plants -- Satellite RNA expression in transgenic plants -- MIC RNA expression in transgenic plants -- Use of RFLP markers for cloning resistance genes -- Disease resistance genes mapped using RFLP markers detoxification of pathotoxin -- Activation of plant defense mechanism - phytoalexins -- Defense related genes -- a. Single gene defense mechanism -- Chitinases and glucanases -- b. Multigenic defense mechanism -- Peroxidases -- Activation of defense genes by chemicals -- Cell and tissue culture -- Somaclonal variation -- Disease resistant plants from tissue culture -- Anther culture -- Protoplasmic fusion -- Reference -- 8 Impact of fungal inoculants on sustainable agriculture -- Introduction -- Soil and soil organisms and nutrients -- Use of microbes -- Microbial inoculants -- Fungal inoculants -- Future prospects and limitations -- Conclusion -- References -- Further reading. , 9 Arbuscular mycorrhizal (AM) fungi: Potential role in sustainable agriculture -- Introduction -- Role of AMF for improving agricultural yield and quality -- Role of AMF in biotic stress management -- Viral diseases -- Nematodes -- Role of AMF against abiotic stress management -- Drought stress -- Salinity stress -- Heavy metal stress -- AMF mediated defense mechanisms -- Factors affecting AMF potential -- Commercial potential of AMF -- Future challenges and strategies in AMF mediated disease management -- Conclusion -- Acknowledgement -- References -- 10 Endophytic fungal diversity of selected medicinal plants and their bio-potential applications -- Diversity of fungal endophytes -- The plant -- Tinospora cordifolia (Willd.) Miers ex Hook F & -- Thoms -- Systematic position -- Adhatoda vasica Nees -- Systematic position -- Murraya koenigii (L.) Spreng -- Systematic position -- Endophytes in laboratory culture -- Gateway of fungi in host plant -- Histological studies -- Isolation and identification of endophytic fungi -- Metabolites from endophytic fungi -- Biological roles of fungal endophytes -- Nutrient pedaling and phyto-stimulation -- Anticancer activity -- Antimicrobial properties -- Antidiabetic activity -- Immunosuppressive activity -- Antiviral activity -- Conclusion -- References -- Further reading -- 11 Prospect of biofuel production by fungus -- Introduction -- Bioethanol production -- Status of bioethanol production in the world and in India -- Feedstocks and biomass used for bioethanol production -- Fungus as microorganism for pretreatment of lignocellulosic substrates for bioethanol production -- Bioreactors for bioethanol production by fungus -- Biodiesel production -- Status of biodiesel production in the world and in India -- Feedstocks and biomass used for biodiesel production -- Fungus as microorganism for oil production. , Production of biodiesel from fungal oil after transesterification process -- Nano catalyzed biodiesel production -- Alumina based catalysts -- Silica-based catalysts -- Calcium oxide-based catalysts -- Zirconia based catalysts -- Magnesium oxide-based catalysts -- Titanium dioxide-based catalysts -- Heteropolyacid based catalysts -- Carbon-based catalysts -- Biogas production -- Status of biogas production in the world and in India -- Feedstocks and biomass used for biogas production -- Production of biogas by anaerobic digestion of organic feedstocks by microorganisms -- Fungus as microorganism for anaerobic digestion -- Microbial fuel cell -- Current scenario of MFC's in the world and in India -- Mechanism of electricity production in MFC -- Mechanisms of electron transfer in MFC -- Direct electron transfer -- Indirect electron transfer (exogenous or endogenous) -- Why fungus is superior to bacteria or algae? -- Fungus as anode and cathode -- Fungi/yeasts as biocatalyst in cathode -- Fungi/yeasts as biocatalyst in anode -- Applications of MFC -- Production of bio electricity -- Biohydrogen production -- Waste water treatment containing organic matter and heavy metals -- Carbon sequestration -- Biosensor -- Conclusions -- Acknowledgement -- References -- 12 Fungal endophytes and their applications as growth promoters and biological control agents -- Introduction -- Plant-endophyte interaction -- Fungal endophytes and their plant host -- Importance/functional significance of fungal endophytes -- Role of fungal endophytes in plant growth promotion -- Mode of action for growth promotion -- Fungal endophytes as biocontrol agents -- Mechanism for biocontrol activities -- Synthesis of bioactive compounds -- Conclusion -- References -- 13 Rhizosphere fungi and their plant association: Current and future prospects -- Introduction. , Plant-microbe communication.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Biofilms-Industrial applications. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (308 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323905251
    Serie: Developments in Applied Microbiology and Biotechnology Series
    DDC: 579.17
    Sprache: Englisch
    Anmerkung: Front Cover -- Application of Biofilms in Applied Microbiology -- Copyright Page -- Contents -- List of contributors -- 1 Bacterial extracellular polysaccharides in biofilm formation and function -- 1.1 Introduction -- 1.2 Exopolysaccharides associated with the matrix of biofilm -- 1.2.1 Various types of architectural polysaccharides associated with the biofilm -- 1.2.1.1 Bacterial alginates -- 1.2.1.2 Cellulose -- 1.2.1.3 Poly-N-acetyl glucose amine -- 1.2.1.4 Capsular polysaccharides -- 1.2.1.5 Levan -- 1.2.1.6 Colonic acid -- 1.2.1.7 Vibrio polysaccharide -- 1.3 Variation in structural components of bacterial EPS -- 1.4 EPS variation in gram-positive and gram-negative bacteria -- 1.4.1 Gram-positive bacteria -- 1.4.2 Gram-negative bacteria -- 1.5 Various methods of exopolysaccharide extraction from the matrix of biofilm -- 1.6 Functional attributes of EPS -- 1.6.1 Adhesion/cohesion/genetic material transfer -- 1.6.2 Symbiosis -- 1.6.3 Development of pathogenicity -- 1.6.4 Source of nutrition -- 1.6.5 Protection from antimicrobials -- 1.7 Mechanism of formation of microbial aggregates by Extracellular Polymeric Substances (EPS) -- 1.7.1 Intracellular adhesion by EPS -- 1.7.2 Conditions influencing EPS formation and action -- 1.8 Applications of EPS in biotechnology -- 1.9 Conclusion -- References -- 2 Pseudomonas putida biofilm: development and dynamics -- 2.1 Introduction -- 2.2 Biofilm formation -- 2.3 Factors affecting Pseudomonas putida biofilm -- 2.3.1 Dynamic nature -- 2.3.2 Flagella -- 2.3.3 Starvation stress -- 2.4 Genetics of Pseudomonas putida biofilm -- 2.5 Biofilm control strategies -- 2.5.1 Physical methods -- 2.5.1.1 Radiation -- 2.5.1.2 Temperature -- 2.5.1.3 Other approaches -- 2.5.2 Chemical methods -- 2.5.2.1 Aggressive chemicals -- 2.5.2.2 Quaternary ammonium compounds -- 2.5.2.3 Surfactants -- 2.5.2.4 Natural products. , 2.5.2.5 Antimicrobial peptides -- 2.5.2.6 Quorum sensing inhibitors -- 2.5.2.7 Metals -- 2.5.2.8 Nanoparticles -- 2.5.2.9 Surface coatings -- 2.5.2.10 Tolerance to chemical approaches -- 2.5.3 Biological methods -- 2.5.3.1 Bacteriophages -- 2.5.3.2 Enzyme-mediated disruption -- 2.5.3.3 Combination strategy -- 2.6 Conclusions and future perspectives -- References -- 3 Biofilm matrix proteins -- 3.1 Introduction -- 3.2 Biofilm matrix -- 3.3 Biofilm matrix proteins -- 3.4 Accumulation-associated protein -- 3.5 Rugosity and biofilm structure modulator A -- 3.6 Biofilm-associated protein -- 3.7 Biofilm-surface layer protein -- 3.8 GlcNAc-Binding protein A -- 3.9 Techniques to extract extracellular matrix from bacterial biofilms -- 3.10 Conclusion -- Acknowledgment -- Conflict of interest statement -- References -- 4 Microbial Biofilm-a modern sustainable approach for bioremediation in 21st century -- 4.1 Introduction -- 4.1.1 The nature of natural biofilms -- 4.1.2 Properties of biofilms -- 4.1.3 Types of biofilm -- 4.1.3.1 Single-species biofilm -- 4.1.3.2 Bacterial biofilm -- 4.1.3.3 Fungal biofilm -- 4.1.3.4 Algal biofilms -- 4.1.3.5 Protozoa biofilms -- 4.1.3.6 Multiple-species biofilm -- 4.2 Biofilm formation -- 4.2.1 Supports in biofilm-based processes -- 4.2.2 Reversible attachment -- 4.2.3 Irreversible attachment -- 4.2.4 Biofilm maturation -- 4.2.5 Detachment -- 4.2.6 Factors affecting biofilm development -- 4.2.6.1 Biofilm resistance -- 4.3 Application -- 4.3.1 Wastewater treatment -- 4.3.1.1 Removal of organic pollutants -- 4.3.1.2 Removal of inorganic pollutants -- 4.3.1.3 Removal of micropollutants -- 4.3.2 Biofilms for the production of industrial chemicals -- 4.3.3 Other uses of biofilms -- 4.4 Processes based on biofilm technology for wastewater treatment -- 4.4.1 Trickling filter -- 4.4.2 Rotating biological contactor microbiology. , 4.4.3 Constructed wetland system -- 4.4.4 Membrane biofilm reactors -- 4.4.5 Fluidized-bed biofilm reactors -- 4.5 Conclusion -- References -- 5 Bacillus subtilis-based biofilms -- 5.1 Introduction -- 5.1.1 Bacillus subtilis as a model organism for studying biofilm formation -- 5.1.2 Global regulators determining the physiology of subpopulations of biofilm cells -- 5.2 General model for biofilm development on substrate -- 5.3 Environmental influences on biofilm development -- 5.3.1 The genetic circuitry of Bacillus subtilis biofilm formation -- 5.4 Biofilm's research in laboratory -- 5.5 Quorum sensing and microbial biofilms -- 5.5.1 Different systems for sensing a quorum -- 5.6 Engineered Bacillus subtilis biofilms -- 5.7 The future of biofilm development research -- 5.8 Conclusion -- Acknowledgment -- References -- 6 A review on the contamination caused by bacterial biofilms and its remediation -- 6.1 Introduction -- 6.2 Steps associated in biofilm formation -- 6.3 Infections associated with biofilm formation -- 6.3.1 Device related biofilm infections -- 6.3.1.1 Dental biofilm formation -- 6.3.1.2 Contact lens -- 6.3.1.3 Central venous catheter -- 6.3.1.4 Urinary tract -- 6.3.2 Nondevice related biofilm formation -- 6.3.2.1 Periodontitis -- 6.3.2.2 Osteomyelitis -- 6.4 Few bacterial biofilm models -- 6.4.1 Escherichia coli -- 6.4.2 Bacillus subtilis -- 6.4.3 Pseudomonas aeruginosa -- 6.5 Various ways to combat bacterial biofilm formation -- 6.5.1 Usage of sorties as an antiadhesion -- 6.5.2 Removal of infected foreign bodies -- 6.5.3 Treatment of infected central venous catheter -- 6.5.4 Early detection of biofilm formation -- 6.5.5 Usage of nanoparticles for the removal of bacterial biofilm -- 6.5.6 Bactericidal surfaces -- 6.5.7 Usage of microorganism responsive magnetic nanoparticles based on silver/gentamicin for biofilm disruption. , 6.5.8 Usage of Superparamagnetic iron oxide encapsulating polymerase nanocarriers for the biofilms removal -- 6.6 Conclusion -- References -- Further reading -- 7 Pseudomonas putida biofilms -- 7.1 Introduction -- 7.2 Biofilm formation by Pseudomonas putida -- 7.2.1 Mechanism -- 7.3 Development and dispersal of mature biofilm -- 7.4 Properties of biofilms -- 7.4.1 Extracellular matrix -- 7.4.2 Quorum sensing -- 7.4.3 Biofilms are less susceptible to antimicrobial agents -- 7.5 Factors affecting biofilm formation -- 7.6 Benefits of biofilm -- 7.7 Possible eradication strategies -- 7.8 Challenges in the eradication of biofilms -- References -- 8 Mechanisms of competition in biofilm communities -- 8.1 Introduction -- 8.2 Exploitative competition -- 8.3 Interference competition -- 8.3.1 Interference mediated by the help of antimicrobial elements -- 8.3.2 Competition sensing hypothesis and quorum sensing mechanisms -- 8.3.3 Biofilm and matrix-associated changes -- 8.3.4 Fruiting bodies and microbial competition -- 8.3.5 Interference mediated by the help of contact-dependent interference -- 8.3.6 Outer membrane exchanges -- 8.3.7 Type VI secretion systems -- 8.4 Studying single and multi-species populations -- 8.5 Genetic aspects of competition -- 8.6 Models for defining different means of competition -- 8.7 Techniques for assessment of biofilm -- 8.8 Quantification and qualification for screening biofilm competition formation of biofilms for study -- 8.9 Microfluidics -- 8.10 Microscopic imaging techniques for biofilm study -- 8.11 Transcriptomics and genomics in biofilm study -- 8.12 Concluding remarks -- References -- 9 Escherichia coli biofilms -- 9.1 Introduction -- 9.2 Seeing the surface -- 9.2.1 Contacting the surface -- 9.2.2 Temporary attachments to surfaces: reversible binding. , 9.2.3 Robust adhesion to surfaces: fimbriae-mediated irreversible attachment -- 9.2.3.1 Type I fimbriae -- 9.2.3.2 Curli fimbriae -- 9.2.3.3 Conjugative pili -- 9.3 Constructing the mature biofilm -- 9.3.1 Surface biomolecules contributing to biofilm structures -- 9.3.2 Biofilm matrix components -- 9.4 Regulated formation of biofilm -- 9.4.1 Coordinated tendency to adhere to a surface -- 9.4.2 Regulatory network for primary interplay with surfaces -- 9.4.2.1 CpxAR system -- 9.4.2.2 RcsCDB system -- 9.4.2.3 EnvZ/OmpR system -- 9.4.2.4 Role of small molecules in biofilm formation -- 9.4.3 Regulation within E. coli biofilms -- 9.4.3.1 Role of central carbon flux in biofilm regulation -- 9.5 Conclusions -- Acknowledgments -- References -- 10 Role of microbial biofilms in bioremediation of organic pollutants in aquatic bodies -- 10.1 Introduction -- 10.2 Quorum sensing-dependent biofilm -- 10.3 Organic pollutants: origin and implications in aquatic bodies -- 10.3.1 Synthetic chemicals -- 10.3.1.1 Antibacterial agents -- 10.3.1.2 Parasiticides -- 10.3.1.3 Pesticides -- 10.3.2 Industrial effluents -- 10.3.2.1 Pharmaceutical industries -- 10.3.2.2 Paper mill industries -- 10.3.2.3 Pesticide industries -- 10.4 Impact of synthetic chemicals and pesticides on aquatic ecosystem -- 10.5 Microbial diversity in aquatic biofilm -- 10.6 Role of biofilm in bioaugmentation of pollutants -- 10.6.1 Assimilation of nutrients -- 10.6.2 Adsorption of contaminants -- 10.6.3 Biodegradation of contaminants -- 10.7 Mechanism of pollutant removal via use of microbial consortia -- 10.8 Constraints of biofilm-based bioremediation -- 10.9 Conclusion and future perspective -- Acknowledgment -- Conflict of interest statement -- References -- 11 Bacterial extracellular polymeric substances in biofilm matrix -- 11.1 Introduction. , 11.2 Extracellular polysaccharides as an integral part of bacterial biofilms.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Photocatalysis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (796 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128242025
    DDC: 660/.2995
    Sprache: Englisch
    Anmerkung: Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Novel photocatalytic techniques for organic dye degradation in water -- 1.1 An overview of dye pollution and classification -- 1.2 Existing treatment options -- 1.3 Photocatalysis: basic principle -- 1.4 Novel photocatalytic approaches -- 1.4.1 Titanium dioxide and strategies for improving photoactivity of TiO2 -- 1.4.2 Metal oxides/sulfide/nanocomposites -- 1.4.3 Layered nanocomposites -- 1.5 Mechanisms of photocatalysis: schemes involved in photocatalytic degradation -- 1.6 Type-II heterostructure semiconductors -- 1.6.1 p-n junction semiconductor -- 1.6.2 Z-scheme semiconductor -- 1.7 Factors affecting photocatalysis/photodegradation -- 1.7.1 Effect of pH -- 1.7.2 Effect of irradiation intensity -- 1.7.3 Effect of temperature -- 1.7.4 Effect of photocatalyst loading -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2 Effect of operating parameters on photocatalytic degradation of dyes by using graphitic carbon nitride -- 2.1 Introduction -- 2.1.1 Photocatalysis -- 2.1.2 Photocatalyst -- 2.2 Graphitic carbon nitride (g - C3N4) photocatalyst -- 2.2.1 Synthesis techniques of g - C3N4 -- 2.2.2 Modifications of g - C3N4 -- 2.2.3 Composites of g - C3N4 -- 2.3 Degradation of dyes -- 2.4 Operating parameters in photocatalytic degradation -- 2.4.1 Effect of pH -- 2.4.2 Effect of catalyst concentration -- 2.4.3 Effect of light intensity -- 2.4.4 Effect of irradiation time -- 2.4.5 Effect of oxidizing agents -- 2.5 Conclusion -- References -- Chapter 3 Photocatalytic degradation of organic dyes using heterogeneous catalysts -- 3.1 Introduction -- 3.1.1 Types of dyes -- 3.1.2 Type of photocatalysts used -- 3.2 TiO2 catalyst -- 3.2.1 Principle of TiO2 photocatalysis and mechanistic pathways -- 3.2.2 Parameters affecting the photocatalytic degradation. , 3.2.3 Modification of TiO2 -- 3.3 ZnO as catalyst -- 3.3.1 Principle of ZnO photocatalysis and mechanistic pathways -- 3.3.2 Parameters affecting the photocatalytic degradation -- 3.3.3 Modification of ZnO -- 3.4 Other photocatalyst -- 3.5 Degradation study of dyes -- 3.6 Conclusion and outlook -- References -- Chapter 4 Effective materials in the photocatalytic treatment of dyestuffs and stained wastewater -- 4.1 Introduction -- 4.2 Various techniques used for removal of dye from wastewater -- 4.2.1 Adsorption technique -- 4.2.2 Ion exchange -- 4.2.3 Membrane filtration technique -- 4.2.4 Electrochemical method -- 4.2.5 Bioremediation and biodegradation -- 4.2.6 Advanced oxidation process -- 4.3 Photocatalysis -- 4.3.1 Mechanism of photocatalysis -- 4.3.2 Influences of several parameters on photocatalysis -- 4.4 Various dyes that can be treated by photolysis -- 4.4.1 Methylene blue -- 4.4.2 Methyl orange -- 4.4.3 Rhodamine B -- 4.4.4 Malachite green -- 4.4.5 Indigo carmine -- 4.5 Future Scope -- References -- Chapter 5 Sonophotocatalytic degradation of refractory textile dyes -- 5.1 Introduction -- 5.2 Sonochemical process -- 5.3 Photocatalytic process -- 5.4 Sonophotocatalytic reactors -- 5.5 Dyes degradation by sonophotocatalysis -- 5.6 Does sonoluminescence activate photocatalyst? -- 5.7 Source of synergism in sonophotocatalysis -- 5.8 Influencing factors -- 5.8.1 Ultrasonic power -- 5.8.2 Catalyst dosage -- 5.8.3 Dye concentration -- 5.8.4 Solution pH -- 5.8.5 Saturation gases -- 5.8.6 Effect of additives -- 5.9 Conclusions and future perspectives -- References -- Chapter 6 High photocatalytic activity under visible light for dye degradation -- 6.1 Introduction -- 6.2 Fundamentals of photocatalytic dye-degradation reactions -- 6.2.1 Photocatalytic dye degradation reactions mechanism -- 6.2.2 Photocatalytic dye-degradation measurement techniques. , 6.3 Different factors affecting photocatalytic dye degradation -- 6.4 Syntheses of UV-Visible/visible light active photocatalysts -- 6.4.1 Synthesis of TiO2@C nanocomposites -- 6.4.2 Synthesis of MoS2 nanoplatelets, nanorods, and nanosheets -- 6.4.3 Synthesis of flower-like ZnO@MoS2 heterostructures (ZMH) -- 6.5 Structural, optical, and methylene blue dye degradation properties -- 6.5.1 TiO2@C nanocomposites -- 6.5.2 Different MoS2 nanostructures -- 6.5.3 Flower-like ZnO@MoS2 nanostructures -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Green and sustainable methods of syntheses of photocatalytic materials for efficient application in dye degradation -- 7.1 Introduction -- 7.2 Environmental concern of organic toxic pollutants -- 7.3 Semiconductor nanomaterials as photocatalyst -- 7.3.1 Strategies for improvement of photocatalytic Performance of Semiconductor nanomaterials -- 7.4 Limitations of traditional synthesis methods -- 7.5 Green approach for synthesis of ZnO-based composites materials -- 7.6 Laboratory syntheses of ZnO nanoparticles -- 7.6.1 Phase determination by XRD and morphology analyses -- 7.6.2 Raman data analysis -- 7.6.3 XPS and FTIR data analyses -- 7.6.4 Optical properties of the nanocomposite materials -- 7.7 Photocatalytic mechanism -- 7.7.1 Sun Light-driven photocatalytic dye degradation activity -- 7.8 Several applications of ZnO and ZnO-rGO nanocomposites -- 7.8.1 Self-cleaning property of cotton fabric under sunlight -- 7.8.2 Self-cleaning property of cotton fabric with different cleaning agents under sunlight -- 7.9 Summary -- 7.10 Conclusions and future scope -- Acknowledgement -- References -- Chapter 8 Hybrid systems to improve photo-based processes and their importance in the dye degradation -- 8.1 Introduction -- 8.2 Hybrid systems -- 8.2.1 Common operational aspects effect. , 8.2.2 Photocatalysis-oxidant addition -- 8.2.3 Fenton-photocatalysis -- 8.2.4 Photocatalysis-electro -- 8.2.5 Photocatalysis-electro-Fenton -- 8.2.6 Sono-photocatalysis -- 8.2.7 Adsorption-photocatalysis -- 8.2.8 Membrane-photocatalysis -- 8.2.9 Photocatalysis-biodegradation -- 8.3 General considerations -- 8.3.1 Hybrid process selection -- 8.3.2 Scale-up considerations -- 8.4 Conclusions -- References -- Chapter 9 Photocatalytic metal nanoparticles: a green approach for degradation of dyes -- 9.1 Introduction -- 9.2 Green synthesis of Zinc oxide (ZnO) NPs -- 9.3 Green synthesis of titanium dioxide (TiO2) NPs -- 9.4 Green synthesis of Copper oxide (CuO/Cu2O) NPs -- 9.5 Photocatalytic degradation of toxic dyes -- 9.6 Application of photocatalysts -- 9.7 Mechanism of dye degradation -- 9.7.1 pH -- 9.7.2 Light intensity and irradiation time -- 9.7.3 Photocatalysts load -- 9.7.4 Initial dye concentration -- 9.7.5 Temperature -- 9.8 The bottlenecks of photocatalytic dye degradation using NPs -- 9.9 Reusability of NPs -- 9.10 Aggregation of NPs -- 9.11 Toxicity of NPs -- 9.12 Hybrid systems for dye removal -- 9.13 Conclusions -- References -- Chapter 10 A facile biogenic-mediated synthesis of Ag nanoparticles over anchored ZnO for enhanced photocatalytic degradation of organic dyes -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Materials -- 10.2.2 Preparation of bark extract -- 10.2.3 Green synthesis of Ag@ZnO -- 10.2.4 Characterization -- 10.2.5 Photocatalytic activity -- 10.2.6 Reuse and recyclability test -- 10.3 Results and discussion -- 10.3.1 Characterization of the catalyst -- 10.3.2 Photocatalytic degradation study -- 10.3.3 Stability and reuse study -- 10.3.4 Plausible photocatalytic reaction mechanism of MB and CR dye degradation -- 10.4 Conclusion -- Acknowledgments -- References. , Chapter 11 Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes -- 11.1 Introduction -- 11.2 Problems associated with dyes -- 11.3 Green synthesis and characterization of nanoparticles -- 11.3.1 Characterization techniques -- 11.3.2 UV-visible spectroscopy -- 11.3.3 X-ray diffraction (XRD) -- 11.3.4 Fourier transform infrared (FTIR) spectroscopy -- 11.3.5 Atomic force microscopy (AFM) -- 11.3.6 Scanning electron microscopy (SEM) -- 11.3.7 Transmission electron microscopy (TEM) -- 11.4 Metallic nanoparticles -- 11.5 Fungal-mediated nanoparticles synthesis -- 11.6 Plant-mediated nanoparticles synthesis -- 11.7 Mechanism of dye degradation by metal nanoparticles -- 11.7.1 Direct photocatalytic degradation -- 11.7.2 Indirect or sensitization-mediated degradation -- 11.8 Factors influencing degradation of dyes -- 11.8.1 pH -- 11.8.2 Concentration of nanoparticles -- 11.8.3 Temperature -- 11.8.4 Irradiation time and light intensity -- 11.8.5 Concentration of dyes -- 11.9 Applications of nanoparticles in dye degradation -- 11.9.1 Fungal-mediated nanoparticles in dye degradation -- 11.9.2 Plant-mediated nanoparticles in dye degradation -- 11.10 Challenges -- 11.11 Conclusion -- References -- Chapter 12 Heterogeneous photocatalysis of organic dyes -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Types/categories of dyes -- 12.2.2 Advancement in degradation of organic dye under heterogeneous photocatalysis -- 12.3 The semiconductor surface for dye adsorption in dark -- 12.4 Dark adsorption of dyes and its efficiency -- 12.5 Photocatalyst details -- 12.5.1 Titanium dioxide -- 12.5.2 Other semiconductors -- 12.6 Photoreactor configurations -- 12.7 Photodecolorization of dye organics -- 12.7.1 Process variables and mechanism for absorption of light by semiconductor. , 12.7.2 Advanced oxidation processes incorporation with sonolysis.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Schlagwort(e): Sewage-Purification-Technological innovations. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (724 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323900119
    Sprache: Englisch
    Anmerkung: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - Nanoadsorbents for scavenging emerging contaminants from wastewater -- 1.1 Introduction -- 1.2 Emerging contaminants -- 1.3 Occurrence of emerging contaminants in aquatic systems -- 1.4 Exposure pathways of emerging contaminants in the environment -- 1.5 Treatment technologies for removal of ECs -- 1.6 Conventional treatment methods -- 1.7 Emerging methods -- 1.7.1 Biological treatment method -- 1.7.2 Advanced oxidation process -- 1.8 Nanoadsorbents -- 1.9 Classification of nanoadsorbents -- 1.10 Methods for preparation of nanoadsorbents -- 1.11 Properties of nanoadsorbents -- 1.12 Mechanisms of nanoadsorption -- 1.13 The π-π interaction -- 1.14 Electrostatic interaction -- 1.15 Hydrophobic interaction -- 1.16 Hydrogen bonding -- 1.17 Factors affecting adsorption process -- 1.17.1 pH -- 1.17.2 Ionic strength -- 1.17.3 Dissolved organic matter -- 1.18 Conclusions -- References -- 2 - Treatment aspect of an emerging pollutant from Pharmaceutical industries using advanced oxidation process: past, curre ... -- 2.1 Introduction -- 2.2 Treatment technologies -- 2.2.1 Recovery process -- 2.2.2 Phase changing technologies -- 2.2.2.1 Adsorption -- 2.2.2.2 Membrane technology -- 2.2.3 Biological process -- 2.3 Advanced oxidation process -- 2.3.1 Nonphotochemical methods -- 2.3.1.1 Ozonation -- 2.3.1.2 Ozone and hydrogen peroxide (Peroxone) -- 2.3.2 Catalytic ozonation -- 2.3.3 Fenton system -- 2.3.3.1 Sulfate-based AOPs -- 2.3.4 Photochemical methods -- 2.3.4.1 O 3  + UV Method -- 2.3.4.2 H 2 O 2 +UV light Method -- 2.3.4.3 H 2 O 2 +UV+ O 3 Method -- 2.3.4.4 Photolysis -- 2.3.4.5 UV/persulfate -- 2.3.4.6 Photo-Fenton Method -- 2.3.4.7 Photocatalysis -- 2.3.4.8 Other AOPs -- 2.4 Future prospects -- References. , 3 - Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics -- 3.1 Introduction -- 3.2 Microplastic generation and pollution -- 3.3 Effect of Synthetic microplastic pollution -- 3.4 Technical implementation of membrane bioreactor (MBR) for elimination micro plastic pollutants -- References -- 4 - Strategies to cope with the emerging waste water contaminants through adsorption regimes -- 4.1 Introduction -- 4.2 Uptake of pollutants from water via adsorption -- 4.3 Adsorbents and there use in purification of waters -- 4.4 Various emerging pollutants and their effects -- 4.4.1 Heavy metals -- 4.4.2 Dyes -- 4.4.3 Pharmaceuticals -- 4.4.4 Fluoride -- 4.4.5 Arsenic -- 4.4.6 Other emerging pollutants -- 4.5 Adsorption strategies for removal of emerging pollutants from waste waters -- 4.6 Adsorption of pollutants using hydrothermal carbonization: an environment safe procedure using carbon adsorbents -- 4.7 Use of hydrothermal carbonization (HTC) in adsorption -- 4.7.1 Dye adsorption -- 4.7.2 Pesticide(s) adsorption -- 4.7.3 Antibiotics/drugs adsorption -- 4.7.4 Endocrine disrupting chemicals (EDC) -- 4.8 Metals and metal ions adsorption by HTCs -- 4.9 Adsorption of metal(s) from mixture of metals -- 4.10 Adsorption of heavy metals using HTCs -- 4.11 Use of cost-effective adsorbent for adsorption of heavy metals -- 4.12 Uptake of metals using low-cost adsorbent materials -- 4.13 Use of agricultural residues as adsorbents -- 4.14 Uses of industrial wastes as adsorbents -- 4.14.1 Marine materials -- 4.14.2 Clay and zeolite -- 4.15 Adsorption/biosorption of antibiotics from waste water -- 4.16 Elimination of heavy metals via adsorption/biosorption -- 4.17 Heavy metals uptake using activated sludge and sludge-derived materials. , 4.18 Uptake of endocrine disrupting chemicals (EDC) -- 4.19 Future prospects -- 4.20 Conclusion -- References -- 5 - Performances of membrane bioreactor technology for treating domestic wastewater operated at different sludge retention ... -- 5.1 Introduction -- 5.1.1 Fundamentals of membrane bioreactors -- 5.1.2 Development of MBR studies -- 5.1.3 Membrane fouling in MBR systems -- 5.1.4 Performances of MBRs at high biomass retention -- 5.1.5 Task and purpose of the study -- 5.2 Materials and methods -- 5.2.1 Experimental setup -- 5.2.2 Sludge retention time -- 5.2.3 Analysis methods -- 5.3 Results and discussion -- 5.3.1 Effect of SRTs on sludge concentration in the system -- 5.3.2 Effects of SRT on sludge bioactivity -- 5.3.3 Effect of SRT on SVI and viscosity -- 5.3.4 Effects of SRT on COD removal in the system -- 5.4 Influence of SRT on sludge particle size distribution -- 5.5 Conclusions -- Acknowledgements -- Abbreviations -- References -- 6 - Advances in nanotechnologies of waste water treatment: strategies and emerging opportunities -- 6.1 Introduction -- 6.2 Metallic nanoparticles -- 6.3 Nanoadsorbents -- 6.4 Nanobiosorbents -- 6.5 Nanomembranes -- 6.6 Nanocatalysts -- 6.6.1 Photocatalyst based advance oxidation process -- 6.7 Conclusions -- Acknowledgements -- References -- 7 - Water and Wastewater Treatment through Ozone-based technologies -- 7.1 Introduction -- 7.2 Global water scenario -- 7.3 Strategies for solving the water shortage issues -- 7.4 Why ozone-based technologies used for water and wastewater treatment? -- 7.4.1 Advanced Oxidation Process (AOP) -- 7.4.2 Benefits of ozone (O 3 ) based treatment -- 7.5 Worldwide status, history, and background of O 3 based technology for drinking water and wastewater treatment -- 7.6 Use of ozone-based technology for disinfection. , 7.6.1 Mechanisms of Inactivation by Ozone -- 7.7 Treatment of municipal and industrial wastewater through Ozone-based technology -- 7.8 Removal of physical pollutants (odor and taste) through Ozone-based technologies -- 7.9 Removal of various chemical pollutants (COD, BOD and coloring agents) from wastewater through Ozone-based technologies -- 7.10 Factors affecting the Ozonation process -- 7.11 Conclusion and Future prospects -- References -- 8 - Constructed wetland: a promising technology for the treatment of hazardous textile dyes and effluent -- 8.1 Introduction -- 8.2 Classification of dyes -- 8.3 Impact of dye toxicity on environment -- 8.4 Impact of dye toxicity on living beings -- 8.5 Dye remediation strategies -- 8.5.1 Physical methods -- 8.5.2 Chemical methods -- 8.5.3 Biological methods -- 8.6 Constructed wetlands: a step towards technology transfer -- 8.7 Classification of constructed wetlands -- 8.8 Recent developments in textile wastewater treatments using constructed wetlands -- 8.9 Conclusion and future prospective -- References -- 9 - Biogenic nanomaterials: Synthesis, characteristics, and recent trends in combating hazardous pollutants (An arising sc ... -- 9.1 Introduction -- 9.2 History of nanotechnology and conventional synthetic routes of nanomaterials -- 9.3 Nanobiotechnology: An arising scientific horizon -- 9.3.1 Biologically fabricated NPs for the removal of hazardous water pollutants -- 9.3.1.1 Biologically fabricated NPs using bacteria and actinomycetes -- 9.3.1.2 Biologically fabricated NPs using fungi -- 9.3.1.3 Biologically fabricated NPs using yeast -- 9.3.1.4 Biologically fabricated NPs using algae -- 9.3.1.5 Biologically fabricated NPs using plant extracts -- 9.3.1.6 Biologically fabricated NPs using agro-industrial waste extracts. , 9.3.2 Possible mechanisms involved in biomimetic synthesis of NPs -- 9.3.2.1 Role of enzymes and proteins -- 9.3.2.2 Role of exopolysaccharides -- 9.4 Advantages, limitations, drawbacks, and future perspectives of nanobiotechnology -- 9.5 Conclusions -- References -- 10 - Removal of emerging contaminants from pharmaceutical wastewater through application of bionanotechnology -- 10.1 Introduction -- 10.2 Overview of contaminants in pharmaceutical wastewater -- 10.3 Applications of nanomaterials for the removal of pharmaceutical contaminants -- 10.3.1 Nanofiltration -- 10.3.2 Advanced oxidation process -- 10.3.3 Nanosorbents (nanotubes and zeolites) -- 10.4 Concluding remarks -- References -- 11 - Recent advances in pesticides removal using agroindustry based biochar -- 11.1 Introduction -- 11.2 What is biochar? -- 11.3 Characteristics of biochar -- 11.3.1 Porosity and surface area -- 11.3.2 pH -- 11.3.3 Functional groups at the surface -- 11.3.4 Carbon content and aromatic structures -- 11.3.5 Mineral composition -- 11.4 Modified biochar -- 11.5 Hazards of pesticides to environment and health -- 11.6 Recent development in pesticides sorption on biochar -- 11.6.1 Herbicides sorption -- 11.6.2 Insecticides sorption -- 11.6.3 Fungicides sorption -- 11.6.4 Nematicides sorption -- 11.7 Conclusion and future perspective -- References -- 12 - Bioremediation - the natural solution -- 12.1 Introduction -- 12.2 Characteristics of municipal wastewater -- 12.2.1 Organic impurities -- 12.2.2 Solids -- 12.2.3 Nutrients -- 12.2.3.1 Phosphorus -- 12.2.3.2 Nitrogen -- 12.2.3.3 Nitrogen present in municipal wastewater treatment plants (WWTPS) -- 12.2.4 Effects of phosphorus and nitrogen on environment -- 12.2.5 Pathogens -- 12.3 Wastewater treatment -- 12.3.1 Physical treatment -- 12.3.2 Chemical treatment. , 12.3.3 Thermal treatment.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    La Vergne :RSC,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: Biological Treatment of Industrial Wastewater presents a comprehensive overview of the latest advances and trends in the use of bioreactors for treating industrial wastewater.
    Materialart: Online-Ressource
    Seiten: 1 online resource (435 pages)
    Ausgabe: 1st ed.
    ISBN: 9781839165399
    Serie: ISSN Series
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Milton :Taylor & Francis Group,
    Schlagwort(e): Microbiology-Cultures and culture media. ; Sewage-Purification. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Focussing on microbial community structure in the field of wastewater treatment, it highlights structure analyses in relation to changes in physico-chemical parameters. It further covers physiological analyses of microbial communities, enrichment of pure cultures, and analyses and modelling of consequences of changes in community structures.
    Materialart: Online-Ressource
    Seiten: 1 online resource (253 pages)
    Ausgabe: 1st ed.
    ISBN: 9781000815122
    DDC: 628.3
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...