GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bons, Paul D; Kleiner, Thomas; Llorens, Maria-Gema; Prior, David J; Sachau, Till; Weikusat, Ilka; Jansen, Daniela (2018): Greenland Ice Sheet: Higher Nonlinearity of Ice Flow Significantly Reduces Estimated Basal Motion. Geophysical Research Letters, 45(13), 6542-6548, https://doi.org/10.1029/2018GL078356
    Publication Date: 2023-02-06
    Description: In times of warming in polar regions, the prediction of ice sheet discharge is of utmost importance to society, because of its impact on sea level rise. In simulations the flow rate of ice is usually implemented as proportional to the differential stress to the power of the exponent n=3. This exponent influences the softness of the modeled ice, as higher values would produce faster flow under equal stress. We show that the stress exponent, which best fits the observed state of the Greenland Ice Sheet, equals n=4, Our results, which are not dependent on a possible basal sliding component of flow, indicate that most of the interior northern ice sheet is currently frozen to bedrock, except for the large ice streams and marginal ice.
    Keywords: File content; File format; File name; File size; MULT; Multiple investigations; Northern_Greenland_Ice_Sheet; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 75 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...