GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Alt, Jeffrey C; Zuleger, Evelyn; Erzinger, Jörg (1995): Mineralogy and stable isotopic compositions of the hydrothermally altered lower sheeted dike complex, Hole 504B, Leg 140. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 155-166, https://doi.org/10.2973/odp.proc.sr.137140.013.1995
    Publication Date: 2024-01-09
    Description: Drilling during Legs 137 and 140 of the Ocean Drilling Program deepened Hole 504B, the only hole to penetrate through the volcanic section and into the underlying hydrothermally altered sheeted dike complex, by 438.1 m to a total depth of 2000.4 meters below seafloor. This paper presents the secondary mineralogy, bulk-rock sulfur contents, and stable isotopic (O, S) compositions, plus oxygen isotopic compositions of secondary minerals from the lower sheeted dike complex drilled during Legs 137 and 140. Various evidence indicates higher temperatures of hydrothermal alteration in the lower dikes than in the upper dikes, including: the local presence of secondary clinopyroxene in the lower dikes; secondary anorthite and hornblende in the lower dikes vs. mainly actinolite and albite-oligoclase in the upper dikes; generally increasing Al and Ti contents of amphibole downward in the dike section; and greater 18O depletions of the lower dikes (d18O = 3.6-5.0 per mil) compared with the upper dikes. Early high-temperature alteration stages (T = 350°-500°C) resulted in 18O depletions and losses of metals (Cu, Zn) and sulfur from the rocks. Local incorporation of reduced seawater sulfate led to elevated d34S values of sulfide in the rocks (up to 2.5 per mil). Quartz + epidote formed in crosscutting veins at temperatures of 310°-320°C from more evolved fluids (d18O = 1 per mil). Late-stage lower-temperature (~250°C) reactions producing albite, prehnite, and zeolites in the rocks caused slight 18O enrichments, but these were insufficient to offset the 18O depletions caused by earlier higher-temperature reactions. Addition of anhydrite to the rocks during seawater recharge led to increased S contents of rocks that had previously lost S during axial hydrothermal alteration, and to further increases in d34S values of total S in the rocks (up to 12 per mil). Despite the evidence for seawater recharge to near the base of the sheeted dike complex, the paucity of late zeolites in the lower dikes suggests that late-stage, off-axis circulation was mainly restricted to the volcanics and shallowest dikes, or to localized high-permeability zones (faults) at depth.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...