GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (1). pp. 102-111.
    Publication Date: 2013-10-28
    Description: The chemical and isotopic composition of foraminiferal shells (so-called proxies) reflects the physico-chemical properties of the seawater. In current day paleoclimate research, the reconstruction of past seawater carbonate system to infer atmospheric CO2 concentrations is one of the most pressing challenges and a variety of proxies have been investigated, such as foraminiferal U/Ca. Since in natural seawater and traditional CO2 perturbation experiments, the carbonate system parameters co-vary, it is not possible to determine the parameter of the carbonate system causing e.g. changes in U/Ca, complicating the use of the latter as a carbonate system proxy. We overcome this problem, by culturing the benthic foraminifer Ammonia sp. at a range of carbonate chemistry manipulation treatments. Shell U/Ca values were determined to test sensitivity of U incorporation to various parameters of the carbonate system. We argue that [CO32-] is the parameter affecting the U/Ca ratio and consequently, the partitioning coefficient for U in Ammonia sp DU. We can confirm the strong potential of foraminiferal U/Ca as a [CO32-] proxy.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...