GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1343-1362 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Direct numerical simulations of turbulence resulting from Kelvin–Helmholtz instability in stably stratified shear flow are used to study sources of anisotropy in various spectral ranges. The set of simulations includes various values of the initial Richardson and Reynolds numbers, as well as Prandtl numbers ranging from 1 to 7. We demonstrate that small-scale anisotropy is determined almost entirely by the spectral separation between the small scales and the larger scales on which background shear and stratification act, as quantified by the buoyancy Reynolds number. Extrapolation of our results suggests that the dissipation range becomes isotropic at buoyancy Reynolds numbers of order 105, although we cannot rule out the possibility that small-scale anisotropy persists at arbitrarily high Reynolds numbers, as some investigators have suggested. Correlation-coefficient spectra reveal the existence of anisotropic flux reversals in the dissipation subrange whose magnitude decreases with increasing Reynolds number. The scalar concentration field tends to be more anisotropic than the velocity field. Estimates of the dissipation rates of kinetic energy and scalar variance based on the assumption of isotropy are shown to be accurate for buoyancy Reynolds numbers greater than O(102). Such estimates are therefore reliable for use in the interpretation of most geophysical turbulence data, but may give misleading results when applied to smaller-scale flows. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...