GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 114(2009), 2169-9291
    In: volume:114
    In: year:2009
    In: extent:13
    Description / Table of Contents: Accounting for ocean currents in the bulk parameterization of the wind stress might represent a physically more plausible way to force an ocean model than ignoring their effect. We show in this study that using the air-sea velocity difference instead of the atmospheric wind in the wind stress formulation dampens both the near-surface eddy activity and the biotic carbon assimilation in a high-resolution model of the North Atlantic. The former is significant, corresponding to a reduction down to 50% in the tropical Atlantic, while in higher latitudes (in agreement with previous results) the reduction of eddy activity is only around 10%. The effect on biotically mediated new production and air-sea carbon fluxes is, on the other hand, minor. New production is reduced by less than 5% on a basin average, while simulated air-sea CO2 fluxes are barely affected at all. The model results imply that eddy/wind interaction introduced by accounting for ocean currents in the wind stress formulation does not drive any additional (and hitherto unaccounted) nutrient fluxes to the sunlit surface of the subtropical gyre, as was recently proposed in the literature.
    Type of Medium: Online Resource
    Pages: 13 , graph. Darst
    ISSN: 2169-9291
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...