GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Ice. ; Solar system. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (657 pages)
    Edition: 1st ed.
    ISBN: 9781461430766
    Series Statement: Astrophysics and Space Science Library ; v.356
    DDC: 523.2
    Language: English
    Note: Intro -- The Science of Solar System Ices -- Foreword -- Preface -- About the Editors -- Acknowledgments -- Contents -- Part I: Optical Remote Sensing of Planetary Ices -- Chapter 1: Observed Ices in the Solar System -- 1.1 Introduction -- 1.2 Detection of Ices and Their Spectral Properties -- 1.3 H2O (Ice) -- 1.4 SO2 Ice -- 1.5 Nitrogen Ice (N2) -- 1.6 Hydrocarbon and Other Ices -- 1.7 Methane Ice (CH4) -- 1.8 Observed Ices in the Solar System -- 1.8.1 Terrestrial Planets -- 1.8.1.1 Mars -- 1.8.2 Asteroids and Comets -- 1.8.3 Jupiter System -- 1.8.3.1 Io -- 1.8.3.2 Europa -- 1.8.3.3 Ganymede -- 1.8.3.4 Callisto -- 1.8.4 Saturn System -- 1.8.5 Uranus System -- 1.8.6 The Neptune System and Beyond -- 1.9 Summary -- References -- Chapter 2: Photometric Properties of Solar System Ices -- 2.1 Introduction -- 2.2 Fundamental Photometric Properties -- 2.2.1 Geometric Albedo and Phase Function -- 2.2.2 Discussion -- 2.3 Photometric Models and Their Parameters -- 2.3.1 The Hapke Model -- 2.3.1.1 Single Scattering by Average Regolith Grains -- 2.3.1.2 Multiple Scattering -- 2.3.1.3 Macroscopic Roughness -- 2.3.1.4 Opposition Effect -- 2.3.1.5 Summary of Current Limitations of the Hapke Model -- 2.3.2 Quasi-fractal Photometric Models -- 2.3.2.1 The Shkuratov-Helfenstein (S-H) Model -- 2.4 Implications for Planetary Science -- 2.5 Summary and Future Work -- References -- Chapter 3: Ultraviolet Properties of Planetary Ices -- 3.1 Introduction -- 3.2 History of UV Observations of Icy Surfaces and Instrumentation -- 3.3 Laboratory Measurements of Ices -- 3.3.1 Water Ice -- 3.3.1.1 Amorphous and Crystalline Ice -- 3.3.1.2 Radiolysis Effects -- 3.3.2 Ammonia Ice -- 3.3.3 Carbon Dioxide -- 3.3.4 Sulfur Dioxide -- 3.3.5 Other Ices -- 3.4 Measurements of Solar System Ices -- 3.4.1 Ultraviolet Observations of the Galilean Satellites -- 3.4.1.1 Introduction/History. , 3.4.1.2 Io -- 3.4.1.3 Europa -- 3.4.1.4 Ganymede -- 3.4.1.5 Callisto -- 3.4.2 Satellites and Rings of Saturn -- 3.4.3 Satellites of Uranus -- 3.4.4 Triton -- 3.4.5 Pluto and Charon -- 3.5 Application of Laboratory Data to Spacecraft Measurements -- 3.6 Conclusions and Needed Measurements -- References -- Chapter 4: The Ices on Transneptunian Objects and Centaurs -- 4.1 Introduction -- 4.2 Brief Overview of the Properties of TNOs and Centaurs -- 4.3 Scattering Models -- 4.3.1 Model Calculations of the Spectrum of 5145 Pholus -- 4.4 Appropriate Laboratory Data on Ices -- 4.4.1 Data Banks Available -- 4.5 Results on Surface Composition and Spectral Interpretation -- 4.5.1 Objects with Volatile Ices -- 4.5.2 Other Objects -- 4.5.2.1 Objects with Featureless to Nearly Featureless Spectra (f < -- 10%) -- 4.5.2.2 Objects with Moderate Water Ice Spectra (10 < -- %f < -- 50%) -- 4.5.2.3 Objects with Strong Water Ice Spectra (f > -- 80%) -- 4.5.3 Relationships of Composition with Other Properties of the Objects -- 4.6 Conclusion and Perspectives -- References -- Part II: Ice Physical Properties and Planetary Applications -- Chapter 5: First-Principles Calculations of Physical Properties of Planetary Ices -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Density-Functional Theory -- 5.2.2 Ab Initio Molecular Dynamics -- 5.2.3 Density-Functional Perturbation Theory -- 5.2.4 Thermodynamics -- 5.3 Physical Properties -- 5.3.1 Static properties: Electronic, Structural and Mechanical -- 5.3.2 Dielectric Properties -- 5.3.3 Dynamical Properties -- 5.4 Examples -- 5.4.1 Nitrogen -- 5.4.2 Water Ice -- 5.4.3 Hydrous and Anhydrous Salts as Planetary Ices -- 5.4.4 The WURM Project -- 5.5 A Few Words About Limitations -- References -- Chapter 6: Frictional Sliding of Cold Ice: A Fundamental Process Underlying Tectonic Activity Within Icy Satellites. , 6.1 Introduction -- 6.2 Limit on Friction Coefficients for Sliding and Heating -- 6.3 Measured Friction Coefficients -- 6.4 Interpretation -- 6.5 Questions Arising -- References -- Chapter 7: Planetary Ices Attenuation Properties -- 7.1 Introduction -- 7.2 The Physics of Attenuation Under Mechanical Forcing -- 7.2.1 A Few Definitions -- 7.2.2 Principles of Laboratory Measurements -- 7.2.3 Brief History of the Research on Ice Attenuation Properties -- 7.2.4 The Physics of Viscoelastic Dissipation in Ice -- 7.2.4.1 Proton Reorientation -- 7.2.4.2 Dislocation-Driven Attenuation -- 7.2.4.3 Grain-Boundary Sliding (GBS) -- 7.2.5 Shear Versus Bulk Viscoelasticity -- 7.2.6 Linear and Non-linear Deformation -- 7.3 Laboratory Measurements on Planetary Ices: State of the Art -- 7.3.1 Dopants and Soluble Impurities -- 7.3.2 Partial Melting and Slurries -- 7.3.3 Solid Particles and Second Phases -- 7.3.4 Porosity -- 7.3.5 Amorphous Ice -- 7.3.6 Material Aging -- 7.4 Quantifying Viscoelasticity and Attenuation -- 7.4.1 Stress-Strain Relationships in the Time Domain -- 7.4.2 Stress-Strain Relationships in the Frequency Domain -- 7.4.3 Phase Lag and Attenuation -- 7.4.4 Simple Dissipation Models -- 7.4.4.1 The Maxwell Model: Advantages and Limits -- 7.4.4.2 Voigt/Kelvin Model -- 7.4.5 Models Accounting for a Transient Creep Component -- 7.4.5.1 Standard Anelastic Solid -- 7.4.5.2 Burgers Model -- 7.4.5.3 Extended Burgers Model -- 7.4.5.4 Caputo Model -- 7.4.5.5 Cole Model -- 7.4.5.6 Andrade Model -- 7.5 Applications to Solar System Objects -- 7.5.1 Historical Approach to Tidal Dissipation Modeling in Planetary Satellites -- 7.5.2 Mechanisms Driving Dissipation in Icy Satellites -- 7.5.3 Key Results from the Maxwell Body Approximation -- 7.5.4 Impact of Anelasticity on the Tidal Response of Icy Satellites. , 7.5.5 Application: Iapetus´ Evolution to Spin-Orbit Resonance -- 7.6 Conclusions and Roadmap for Future Research -- References -- Chapter 8: Creep Behavior of Ice in Polar Ice Sheets -- 8.1 Introduction -- 8.2 Polar Ice Sheets and Deep Ice Cores -- 8.2.1 The Antarctic Ice Sheet -- 8.2.2 The Greenland Ice Sheet -- 8.3 Viscoplastic Behavior of Single Ice Crystals -- 8.3.1 Basal and Non-basal Slip -- 8.3.2 Dynamics of Dislocations -- 8.3.3 Internal Friction -- 8.3.4 The Flow Law and Rate-Controlling Processes for Basal Slip of Single Ice Crystals -- 8.4 Ductile Behavior of Isotropic Polycrystalline Ice -- 8.4.1 Creep Behavior -- 8.4.1.1 Primary Creep -- 8.4.1.2 Internal Friction -- 8.4.1.3 Secondary Creep -- Behavior at Low Stresses -- Effect of Temperature and a Liquid Phase -- Effect of Grain Size -- Effect of Particles and Impurities -- Effect of Confining Pressure -- Anisotropy of Ices -- 8.4.1.4 Tertiary Creep -- 8.5 Rate-Controlling Processes in the Creep of Polycrystalline Ice -- 8.5.1 Secondary Creep with n=3 -- 8.5.2 Secondary Creep with n < -- 2 -- 8.5.3 Tertiary Creep -- 8.6 Conclusions -- References -- Chapter 9: Cratering on Icy Bodies -- 9.1 Introduction -- 9.2 Ice as a Geological Material and the Consequences for Impact Studies -- 9.3 Impact Speeds in the Outer Solar System -- 9.4 Laboratory Experiments on Impact Cratering in Ice Targets -- 9.4.1 Shock Hugoniot Measurements -- 9.4.2 Impact Cratering Experiments -- 9.4.3 Experimental Results -- 9.5 Hydrocode Modelling of Impacts on Icy Bodies -- 9.6 Observations of Craters on Icy Solar System Bodies -- 9.7 Real Craters on Porous Icy Bodies (i.e., Comet Nuclei) -- 9.8 Catastrophic Disruption of Icy Bodies (Experiment and Modelling) -- 9.9 Summary -- References -- Chapter 10: Geology of Icy Bodies -- 10.1 Introduction -- 10.2 Impact Cratering on Icy Bodies -- 10.2.1 Simple Craters. , 10.2.2 Regular Complex Craters -- 10.2.3 Complex Craters on the Icy Galilean Satellites -- 10.2.4 Palimpsests on Ganymede and Callisto -- 10.2.5 Impact Basins -- 10.2.6 Crater Chains -- 10.2.7 Ray Craters -- 10.2.8 Craters on Titan -- 10.2.9 Impact Cratering Chronology Models -- 10.2.10 Laboratory Experiments of Impact Cratering into Icy Material -- 10.3 Tectonic Resurfacing on Icy Satellites -- 10.3.1 Fractures and Graben-Like Structures -- 10.3.1.1 Fractures Related to Impact Processes -- 10.3.1.2 Networks of Fractures Related to Global Processes -- 10.3.2 Grooves -- 10.3.3 Coronae -- 10.3.4 Ridges -- 10.3.5 Bands -- 10.3.6 Lenticulae and Chaotic Terrain -- 10.3.7 Folds -- 10.4 Cryovolcanism on Icy Satellites -- 10.5 Surface Erosion and Degradation on Icy Satellites -- 10.5.1 Mass Wasting on Icy Satellites -- 10.5.2 Impact Gardening -- 10.5.3 Sputtering -- 10.5.4 Sublimation -- 10.5.5 Interaction Between Surface and Atmosphere -- 10.6 Summary and Geological Evolution of Icy Satellites -- References -- Part III: Volatiles in Ices -- Chapter 11: Amorphous and Crystalline H2O-Ice -- 11.1 Introduction -- 11.2 Phases of H2O-Ice -- 11.2.1 Review of Diffraction Techniques -- 11.2.2 Structure and Formation Conditions of Relevant Phases -- 11.2.2.1 Structure -- 11.2.2.2 Formation Conditions -- 11.2.3 Laboratory Needs -- 11.3 Phase Changes -- 11.3.1 Thermally Induced -- 11.3.1.1 Glass Transition -- 11.3.1.2 Amorphous-Amorphous -- 11.3.1.3 Amorphous to Crystalline -- 11.3.1.4 Crystalline to Crystalline -- 11.3.1.5 Other Phases -- 11.3.2 Radiation Induced -- 11.3.3 Impact Induced -- 11.3.4 Laboratory Needs -- 11.4 Implications of Phase -- 11.4.1 Thermal/Radiation History -- 11.4.2 Thermal Properties -- 11.4.3 Chemistry -- 11.4.3.1 Cavity Volume/Cage Effect -- 11.4.4 Laboratory Needs -- 11.5 Infrared Spectroscopy -- 11.5.1 Relevant Absorptions. , 11.5.2 Amorphous H2O-Ice.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...