GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schlagwort(e): Emerging contaminants in water. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (438 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811918476
    Serie: Springer Transactions in Civil and Environmental Engineering Series
    DDC: 614.5924144
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- Editors and Contributors -- Part I Monitoring and Occurrence of Emerging Contaminants -- 1 A First Report of Perfluoroalkyl Substances (PFAS) in a Large West-Flowing River in Southern India -- 1.1 Introduction -- 1.2 Study Area -- 1.3 Materials and Methods -- 1.3.1 Water Sampling -- 1.3.2 PFSAs Extraction -- 1.3.3 Instrumental Analysis -- 1.3.4 Quality Control/Quality Assurance -- 1.4 Results and Discussions -- 1.4.1 Levels of PFAS in Other Stations -- 1.5 Conclusions -- References -- 2 Passive Sampling Techniques for Monitoring of Pharmaceuticals and Personal Care Products in Water Matrix: Trends from 2016 to 2020 -- 2.1 Introduction -- 2.2 Methods -- 2.3 Passive Sampling: Theory and Calibration -- 2.4 Polar Organic Chemical Integrative Samplers (POCIS) -- 2.5 DGT -- 2.6 Chemcatcher® -- 2.7 Conclusions and Future Perspectives -- References -- 3 Distribution of Emerging Contaminants, and Antimicrobial Resistance: Occurrence, Toxicity, Risk Assessment, and Removal -- 3.1 Introduction -- 3.1.1 Occurrence, Source, and Fate of Pharmaceuticals and Personal Care Products (PPCPs) -- 3.2 Effect of PPCPs -- 3.2.1 Aquatic Life -- 3.2.2 Humans -- 3.3 Risk Assessment Studies -- 3.3.1 Risk Characterization -- 3.3.2 Constraints -- 3.4 Biological Remediation -- 3.4.1 Responsible Factors -- 3.4.2 Biodegradation Pathways -- 3.4.3 Intermediate Products Formation -- 3.4.4 Removal Efficiencies -- 3.5 Conclusions -- References -- 4 Realistic Approach for Determination Groundwater Pollution and Source Accounting -- 4.1 Introduction -- 4.2 Sources of Groundwater -- 4.3 Sources of Groundwater Pollution -- 4.3.1 Groundwater Pollution by Natural Activities -- 4.3.2 Groundwater Pollution by Anthropogenic Activities -- 4.4 Groundwater Parameters -- 4.5 Impacts of Groundwater Pollution. , 4.6 Preventive Measures for Groundwater Pollution -- 4.6.1 Social Accountability -- 4.6.2 Industrial Accountability -- 4.7 Future Scopes -- 4.8 Conclusions -- References -- Part II Sources, Effects and Ecotoxicity of Emerging Contaminants -- 5 Emerging Contaminants: Sources, Effects, and Treatment by New Adsorption Methods -- 5.1 Introduction -- 5.2 ECs and Associated Health Risks -- 5.2.1 Pharmaceutical Debris-Based ECs -- 5.2.2 Personal Care Products-Based ECs -- 5.2.3 Pesticides, Biocides, and Antimicrobials-Based ECs -- 5.2.4 Polycyclic Aromatic Hydrocarbon-Based ECs -- 5.2.5 Polychlorinated Biphenyls and Dioxins-Based ECs -- 5.2.6 Dyes-Based ECs -- 5.3 Recognition, Assessment, and Management of ECs -- 5.3.1 Activated Carbon-Facilitated Adsorption -- 5.3.2 Biochar-Facilitated Adsorption -- 5.3.3 Nanomaterials-Facilitated Adsorption -- 5.4 Conclusions and Future Perspectives -- References -- 6 Co-occurrence of Geogenic, Microbial, and Anthropogenic Emerging Contaminants: Ecotoxicity and Relative Environmental Risks -- 6.1 Introduction -- 6.1.1 Geogenic Emerging Contaminants (GECs) -- 6.1.2 Anthropogenic Emerging Contaminants (AECs) -- 6.1.3 Microbial Emerging Contaminants (MECs) -- 6.2 Co-occurrence of AECs, MECs, and GECs in Nature -- 6.3 Ecotoxicological and Relative Environmental Risks from AECs, MECs, and GECs -- 6.4 Conclusions -- References -- 7 IoT as an Assistive Technology for Community-Based Water Management Practices During COVID-19 Pandemic and Beyond -- 7.1 Introduction -- 7.2 Research Methodology -- 7.3 Government Initiatives and Water Governance -- 7.3.1 Rainwater Harvesting -- 7.3.2 Atal Bhujal Yojana -- 7.3.3 Interlinking River Project -- 7.3.4 Need for Water Governance -- 7.4 Need and Role of IoT in Water Management -- 7.5 Community-Based Water Management Practices -- 7.5.1 Tanks in Karnataka -- 7.5.2 Stepwell -- 7.5.3 Pyne-Ahar. , 7.5.4 Kuls and Khuls -- 7.5.5 Tanka -- 7.5.6 Bamboo Drip Irrigation -- 7.6 Discussion and Strategies -- 7.6.1 Strategies to Improve Water Management Using IoT -- 7.7 Conclusion -- References -- 8 Water Pollution Hazards of Single-Use Face Mask in Indian Riverine and Marine System -- 8.1 Introduction -- 8.2 Current State of the Problem -- 8.3 Composition and Different Types of Face Masks -- 8.3.1 Surgical Facemask -- 8.3.2 N95 Facemasks -- 8.3.3 KN95 Facemask³ -- 8.4 Occurrence, Fate, and Transport of Masks in Water Bodies -- 8.4.1 Occurrence and Detection of Micro and Nano-Plastics from Masks -- 8.4.2 Interaction Between Microplastics and Other Pollutants -- 8.4.3 Transformation and Proliferation of Antimicrobial Resistance Bacteria -- 8.4.4 Rivers as Transport Pathways to the Ocean -- 8.4.5 Partitioning and Mass Flow Behaviour in Riverine and Marine Systems -- 8.5 Hazards of Used Facemask on Marine Life and Human Health -- 8.6 Risk of COVID Spreading Through Water Bodies -- 8.7 Biohazard Risk Mitigation Guidelines -- 8.8 Future Steps to Control Microplastic Pollution Through Facemasks -- 8.9 Future Direction and Conclusion -- References -- 9 Impact of Arabidopsis thaliana Root Exudates on Dissimilatory Nitrate Reduction to Ammonium (DNRA) Activities in Shewanella loihica PV-4 and Agricultural Soil Enrichments -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.2.1 Root Exudates Collection from Arabidopsis thaliana Plant and Chemical Characterization -- 9.2.2 Synthesis of Artificial Root Exudates -- 9.2.3 Evaluation of the Effects of Arabidopsis thaliana Root Exudates or Artificial Root Exudates on the Denitrification-Versus-DNRA Regulation in Shewanella loihica Cultures -- 9.2.4 Evaluation of the Effects of A. thaliana Root Exudates or Artificial Root Exudates on the Denitrification-Versus-DNRA Competition in Agricultural Soil Microbial Extracts. , 9.2.5 Analytical Procedures for Measurement of N2O, NO3 - , NO2 - and NH4 + -- 9.2.6 Measurement of 15 NH4 + Produced from Reduction of 15 NO3 - Via DNRA -- 9.2.7 Statistical Analysis -- 9.3 Results -- 9.3.1 Effects of A. Thaliana Root Exudates and Artificial Root Exudates on the Dual NO3 - Reduction Pathways in S. loihica strain PV-4 -- 9.3.2 Effects of Artificial Root Exudates on the NO3 - Fate in Agricultural Soil Enrichments -- 9.4 Discussion -- 9.5 Implications and Future Research -- 9.6 Conclusions -- References -- 10 Microalgal Bioremediation of Emerging Contaminants in Domestic Wastewater -- 10.1 Introduction -- 10.2 Source and Occurrence of Emerging Contaminants -- 10.3 Algae-Based Domestic Sewage Treatment -- 10.4 Bioremediation of Emerging Contaminants -- 10.4.1 Bioadsorption of ECs -- 10.4.2 Bioaccumulation of ECs -- 10.4.3 Intracellular and Extracellular Biodegradation of ECs -- 10.4.4 Novel Approaches -- 10.5 Future Scenario -- 10.6 Conclusions -- References -- Part III Conventional and Advanced Treatment Strategies -- 11 Emerging Contaminants in Water and Wastewater: Remediation Perspectives and Innovations in Treatment Technologies -- 11.1 Introduction -- 11.2 Emerging Contaminants as Aquatic Environmental Hazards -- 11.3 Treatment Technologies -- 11.4 Advantages and Challenges in Conventional Treatment Technology -- 11.5 Advance Treatment Technology -- 11.5.1 Removal by Adsorption -- 11.5.2 Membrane-Based Processes -- 11.5.3 Advanced Oxidation Processes (AOPs) -- 11.6 Combined Treatment Technology -- 11.7 Future Research Perspectives -- 11.8 Conclusion -- References -- 12 Adsorption-Photocatalysis Dual-Modality Approach for Removal of PPCPs from Aquatic Environment -- 12.1 Introduction -- 12.2 Adsorption-Photocatalysis-Dual-Modality Approach -- 12.3 Photocatalysts Used for Environmental Remediation. , 12.4 Application to Real Water Matrices -- 12.5 Challenges in Designing Adsorption-Photocatalysis Material -- 12.6 Concluding Remark and Future Needs -- References -- 13 Components of Aquaculture as Sources of Environmental Pollution and Available Remedial Measures -- 13.1 Introduction -- 13.2 Aquaculture Components as Sources of Pollution -- 13.2.1 Aquaculture Ingredients (Feed, Fertilizer, Chemicals, Etc.) -- 13.2.2 Animal Excretions (Faeces, Ammonia, Methane, CO2 Etc.) -- 13.2.3 Inedible Wastes -- 13.3 Remedial Measures for Aquaculture Waste Removal -- 13.3.1 Innovative Culture Methods -- 13.3.2 Physical, Chemical, and Microbial Treatment of Wastewater -- 13.3.3 Using Aquaculture Wastewater for Irrigating Agriculture Crops -- 13.3.4 Using Aquaculture Wastewater for Culturing Algae (Algiculture) -- 13.4 Conclusions -- References -- 14 Recent Advances in Wetland-Based Tertiary Treatment Technologies for PPCPs Removal from Wastewater -- 14.1 Introduction -- 14.2 Occurrence of PPCPs in Wastewater and STPs -- 14.3 Existing Treatment Technologies for PPCPs Removal -- 14.3.1 Constructed Wetlands (CWs) for PPCPs Removal -- 14.3.2 PPCPs Properties Affecting the Removal Pathway during Treatment by CWs -- 14.4 Feasibility of Hybrid Systems Comprising CWs Combined with Other Treatment Processes -- 14.4.1 Hybrid CW Systems -- 14.4.2 Hybrid Treatment Systems Combining CW with Other Treatment Processes -- 14.4.3 Hybrid Systems Other Than CWs for PPCPs Removal -- 14.5 Conclusion and Future Prospects -- References -- 15 Removal of Free Cyanide (CN−) from Water and Wastewater Using Activated Carbon: A Review -- 15.1 Introduction -- 15.2 Free Cyanide (CN−) Removal by Activated Carbon -- 15.2.1 Raw Activated Carbons for CN− Removal -- 15.2.2 CN− Removal by Metal Impregnated AC -- 15.2.3 Functional Group Incorporated AC for CN− Removal. , 15.2.4 Biological Conjugation of AC for Simultaneous Adsorption and Biodegradation.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...