GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Asymmetric synthesis. ; Organic compounds -- Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (535 pages)
    Edition: 1st ed.
    ISBN: 9780471465249
    DDC: 547/.2
    Language: English
    Note: Intro -- PRINCIPLES AND APPLICATIONS OF ASYMMETRIC SYNTHESIS -- CONTENTS -- Preface -- Abbreviations -- 1 Introduction -- 1.1 The Significance of Chirality and Stereoisomeric Discrimination -- 1.2 Asymmetry -- 1.2.1 Conditions for Asymmetry -- 1.2.2 Nomenclature -- 1.3 Determining Enantiomer Composition -- 1.3.1 Measuring Specific Rotation -- 1.3.2 The Nuclear Magnetic Resonance Method -- 1.3.3 Some Other Reagents for Nuclear Magnetic Resonance Analysis -- 1.3.4 Determining the Enantiomer Composition of Chiral Glycols or Cyclic Ketones -- 1.3.5 Chromatographic Methods Using Chiral Columns -- 1.3.6 Capillary Electrophoresis with Enantioselective Supporting Electrolytes -- 1.4 Determining Absolute Configuration -- 1.4.1 X-Ray Diffraction Methods -- 1.4.2 Chiroptical Methods -- 1.4.3 The Chemical Interrelation Method -- 1.4.4 Prelog's Method -- 1.4.5 Horeau's Method -- 1.4.6 Nuclear Magnetic Resonance Method for Relative Configuration Determination -- 1.5 General Strategies for Asymmetric Synthesis -- 1.5.1 "Chiron" Approaches -- 1.5.2 Acyclic Diastereoselective Approaches -- 1.5.3 Double Asymmetric Synthesis -- 1.6 Examples of Some Complicated Compounds -- 1.7 Some Common Definitions in Asymmetric Synthesis and Stereochemistry -- 1.8 References -- 2 a-Alkylation and Catalytic Alkylation of Carbonyl Compounds -- 2.1 Introduction -- 2.2 Chirality Transfer -- 2.2.1 Intra-annular Chirality Transfer -- 2.2.2 Extra-annular Chirality Transfer -- 2.2.3 Chelation-Enforced Intra-annular Chirality Transfer -- 2.3 Preparation of Quaternary Carbon Centers -- 2.4 Preparation of a-Amino Acids -- 2.5 Nucleophilic Substitution of Chiral Acetal -- 2.6 Chiral Catalyst-Induced Aldehyde Alkylation: Asymmetric Nucleophilic Addition -- 2.7 Catalytic Asymmetric Additions of Dialkylzinc to Ketones: Enantioselective Formation of Tertiary Alcohols. , 2.8 Asymmetric Cyanohydrination -- 2.9 Asymmetric a-Hydroxyphosphonylation -- 2.10 Summary -- 2.11 References -- 3 Aldol and Related Reactions -- 3.1 Introduction -- 3.2 Substrate-Controlled Aldol Reaction -- 3.2.1 Oxazolidones as Chiral Auxiliaries: Chiral Auxiliary-Mediated Aldol-Type Reactions -- 3.2.2 Pyrrolidines as Chiral Auxiliaries -- 3.2.3 Aminoalcohols as the Chiral Auxiliaries -- 3.2.4 Acylsultam Systems as the Chiral Auxiliaries -- 3.2.5 a-Silyl Ketones -- 3.3 Reagent-Controlled Aldol Reactions -- 3.3.1 Aldol Condensations Induced by Chiral Boron Compounds -- 3.3.2 Aldol Reactions Controlled by Corey's Reagents -- 3.3.3 Aldol Condensations Controlled by Miscellaneous Reagents -- 3.4 Chiral Catalyst-Controlled Asymmetric Aldol Reaction -- 3.4.1 Mukaiyama's System -- 3.4.2 Asymmetric Aldol Reactions with a Chiral Ferrocenylphosphine-Gold(I) Complex -- 3.4.3 Asymmetric Aldol Reactions Catalyzed by Chiral Lewis Acids -- 3.4.4 Catalytic Asymmetric Aldol Reaction Promoted by Bimetallic Catalysts: Shibasaki's System -- 3.5 Double Asymmetric Aldol Reactions -- 3.6 Asymmetric Allylation Reactions -- 3.6.1 The Roush Reaction -- 3.6.2 The Corey Reaction -- 3.6.3 Other Catalytic Asymmetric Allylation Reactions -- 3.7 Asymmetric Allylation and Alkylation of Imines -- 3.8 Other Types of Addition Reactions: Henry Reaction -- 3.9 Summary -- 3.10 References -- 4 Asymmetric Oxidations -- 4.1 Asymmetric Epoxidation of Allylic Alcohols: Sharpless Epoxidation -- 4.1.1 The Characteristics of Sharpless Epoxidation -- 4.1.2 Mechanism -- 4.1.3 Modifications and Improvements of Sharpless Epoxidation -- 4.2 Selective Opening of 2,3-Epoxy Alcohols -- 4.2.1 External Nucleophilic Opening of 2,3-Epoxy Alcohols -- 4.2.2 Opening by Intramolecular Nucleophiles -- 4.2.3 Opening by Metallic Hydride Reagents -- 4.2.4 Opening by Organometallic Compounds. , 4.2.5 Payne Rearrangement and Ring-Opening Processes -- 4.2.6 Asymmetric Desymmetrization of meso-Epoxides -- 4.3 Asymmetric Epoxidation of Symmetric Divinyl Carbinols -- 4.4 Enantioselective Dihydroxylation of Olefins -- 4.5 Asymmetric Aminohydroxylation -- 4.6 Epoxidation of Unfunctionalized Olefins -- 4.6.1 Catalytic Enantioselective Epoxidation of Simple Olefins by Salen Complexes -- 4.6.2 Catalytic Enantioselective Epoxidation of Simple Olefins by Porphyrin Complexes -- 4.6.3 Chiral Ketone-Catalyzed Asymmetric Oxidation of Unfunctionalized Olefins -- 4.7 Catalytic Asymmetric Epoxidation of Aldehydes -- 4.8 Asymmetric Oxidation of Enolates for the Preparation of Optically Active a-Hydroxyl Carbonyl Compounds -- 4.8.1 Substrate-Controlled Reactions -- 4.8.2 Reagent-Controlled Reactions -- 4.9 Asymmetric Aziridination and Related Reactions -- 4.9.1 Asymmetric Aziridination -- 4.9.2 Regioselective Ring Opening of Aziridines -- 4.10 Summary -- 4.11 References -- 5 Asymmetric Diels-Alder and Other Cyclization Reactions -- 5.1 Chiral Dienophiles -- 5.1.1 Acrylate -- 5.1.2 a,b-Unsaturated Ketone -- 5.1.3 Chiral a,b-Unsubstituted N-Acyloxazolidinones -- 5.1.4 Chiral Alkoxy Iminium Salt -- 5.1.5 Chiral Sulfinyl-Substituted Compounds as Dienophiles -- 5.2 Chiral Dienes -- 5.3 Double Asymmetric Cycloaddition -- 5.4 Chiral Lewis Acid Catalysts -- 5.4.1 Narasaka's Catalyst -- 5.4.2 Chiral Lanthanide Catalyst -- 5.4.3 Bissulfonamides (Corey's Catalyst) -- 5.4.4 Chiral Acyloxy Borane Catalysts -- 5.4.5 Bronsted Acid-Assisted Chiral Lewis Acid Catalysts -- 5.4.6 Bis(Oxazoline) Catalysts -- 5.4.7 Amino Acid Salts as Lewis Acids for Asymmetric Diels-Alder Reactions -- 5.5 Hetero Diels-Alder Reactions -- 5.5.1 Oxo Diels-Alder Reactions -- 5.5.2 Aza Diels-Alder Reactions -- 5.6 Formation of Quaternary Stereocenters Through Diels-Alder Reactions. , 5.7 Intramolecular Diels-Alder Reactions -- 5.8 Retro Diels-Alder Reactions -- 5.9 Asymmetric Dipolar Cycloaddition -- 5.10 Asymmetric Cyclopropanation -- 5.10.1 Transition Metal Complex-Catalyzed Cyclopropanations -- 5.10.2 The Catalytic Asymmetric Simmons-Smith Reaction -- 5.11 Summary -- 5.12 References -- 6 Asymmetric Catalytic Hydrogenation and Other Reduction Reactions -- 6.1 Introduction -- 6.1.1 Chiral Phosphine Ligands for Homogeneous Asymmetric Catalytic Hydrogenation -- 6.1.2 Asymmetric Catalytic Hydrogenation of C=C Bonds -- 6.2 Asymmetric Reduction of Carbonyl Compounds -- 6.2.1 Reduction by BINAL-H -- 6.2.2 Transition Metal-Complex Catalyzed Hydrogenation of Carbonyl Compounds -- 6.2.3 The Oxazaborolidine Catalyst System -- 6.3 Asymmetric Reduction of Imines -- 6.4 Asymmetric Transfer Hydrogenation -- 6.5 Asymmetric Hydroformylation -- 6.6 Summary -- 6.7 References -- 7 Applications of Asymmetric Reactions in the Synthesis of Natural Products -- 7.1 The Synthesis of Erythronolide A -- 7.2 The Synthesis of 6-Deoxyerythronolide -- 7.3 The Synthesis of Rifamycin S -- 7.3.1 Kishi's Synthesis in 1980 -- 7.3.2 Kishi's Synthesis in 1981 -- 7.3.3 Masamune's Synthesis -- 7.4 The Synthesis of Prostaglandins -- 7.4.1 Three-Component Coupling -- 7.4.2 Synthesis of the w-Side Chain -- 7.4.3 The Enantioselective Synthesis of (R)-4-Hydroxy-2-Cyclopentenone -- 7.5 The Total Synthesis of Taxol-A Challenge and Opportunity for Chemists Working in the Area of Asymmetric Synthesis -- 7.5.1 Synthesis of Baccatin III, the Polycyclic Part of Taxol -- 7.5.2 Asymmetric Synthesis of the Taxol Side Chain -- 7.6 Summary -- 7.7 References -- 8 Enzymatic Reactions and Miscellaneous Asymmetric Syntheses -- 8.1 Enzymatic and Related Processes -- 8.1.1 Lipase/Esterase-Catalyzed Reactions -- 8.1.2 Reductions -- 8.1.3 Enantioselective Microbial Oxidation. , 8.1.4 Formation of C-C Bond -- 8.1.5 Biocatalysts from Cultured Plant Cells -- 8.2 Miscellaneous Methods -- 8.2.1 Asymmetric Synthesis Catalyzed by Chiral Ferrocenylphosphine Complex -- 8.2.2 Asymmetric Hydrosilylation of Olefins -- 8.2.3 Synthesis of Chiral Biaryls -- 8.2.4 The Asymmetric Kharasch Reaction -- 8.2.5 Optically Active Lactones from Metal-Catalyzed Baeyer-Villiger-Type Oxidations Using Molecular Oxygen as the Oxidant -- 8.2.6 Recent Progress in Asymmetric Wittig-Type Reactions -- 8.2.7 Asymmetric Reformatsky Reactions -- 8.2.8 Catalytic Asymmetric Wacker Cyclization -- 8.2.9 Palladium-Catalyzed Asymmetric Alkenylation of Cyclic Olefins -- 8.2.10 Intramolecular Enyne Cyclization -- 8.2.11 Asymmetric Darzens Reaction -- 8.2.12 Asymmetric Conjugate Addition -- 8.2.13 Asymmetric Synthesis of Fluorinated Compounds -- 8.3 New Concepts in Asymmetric Reaction -- 8.3.1 Ti Catalysts from Self-Assembly Components -- 8.3.2 Desymmetrization -- 8.3.3 Cooperative Asymmetric Catalysis -- 8.3.4 Stereochemical Nonlinear Effects in Asymmetric Reaction -- 8.3.5 Chiral Poisoning -- 8.3.6 Enantioselective Activation and Induced Chirality -- 8.4 Chiral Amplification, Chiral Autocatalysis, and the Origin of Natural Chirality -- 8.5 Summary -- 8.6 References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...