GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Science (General). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (666 pages)
    Edition: 1st ed.
    ISBN: 9781493925780
    Series Statement: Food Engineering Series
    DDC: 664/.028
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- The State ofWater andIts Impact onPharmaceutical Systems: Lipid-Based Drug Delivery Systems andAmorphous Solids -- 1 Introduction -- 2 Molecular Dynamics Simulations -- 3 Water Uptake, Distribution, andEffects onDrug Solubility inLipid Vehicles Composed ofTriglycerides andMonoglycerides -- 4 Water Uptake andIts Implications inanAmorphous Glass (PVP) -- 5 Water Distribution, Mobility, andEffects onTransbilayer Diffusion ofPermeants inLipid Bilayers -- 6 Conclusions -- References -- Food Preservation by Nanostructures-Water Interactions Control -- 1 Introduction -- 2 Parameters of Stability -- 2.1 Water Activity (aw) -- 2.2 Glass Transition Temperature (Tg) -- 3 Thermodynamic Parameters -- 4 Water Confined in Nanostructures -- 5 Minimum Entropy and Cooperatively Rearrangement Regions -- 6 Potential Application of Nanostructuration to Foods -- 7 Description of Food Morphology -- 8 Conclusions -- References -- Water and Food Appearance -- 1 Introduction -- 2 Potential Causes of Transparency/Opacity Changes -- 2.1 Dehydration or Rehydration -- 2.2 Appearance/Disappearance of Particles (Crystals/Bubbles Formation or Solids Dissolution) -- 3 Materials and Methodology for the Study of Appearance Properties -- 3.1 Materials -- 3.2 Chromatic Attributes -- 3.3 Opacity -- 3.4 Translucence -- 4 Translucence Changes -- 4.1 Fruit Products -- 4.2 Cereal Products -- 4.2.1 Transparentization by Refractive Index Matching -- 4.2.2 Correlation Between Reflectance and Chemical Markers of the Maillard Reaction -- 5 Conclusions -- 6 Future Work -- References -- Maillard Reaction inLimited Moisture andLow Water Activity Environment -- 1 Introduction -- 2 Materials andMethods -- 2.1 Preparation ofModel System -- 2.2 Color Parameters andAbsorbance Measurements -- 2.3 Kinetic Studies. , 2.4 Experimental Design andStatistical Analysis -- 3 Results andDiscussion -- 3.1 Preliminary Results -- 3.1.1 Color Development inControl -- 3.1.2 Determination ofSpectrumPeak -- 3.1.3 Effect ofMoisture Content intheColor Development -- 3.1.4 Color Parameters -- 3.1.5 Reaction Rate andKinetic Order -- 3.1.6 Reactivity ofReducing Sugars inMaillard Reaction -- 4 Conclusion andRecommendations forFuture Research -- References -- Carbohydrates andProteins asNonequilibrium Components of Biological Materials -- 1 Introduction -- 2 Dielectric andMechanical Relaxation Times -- 3 Fluidness Characteristics -- 4 Fluidness inFood Processing andStorage -- 4.1 Effects onMicrostructure -- 4.2 Stickiness andRelaxation Times -- 4.3 Component Crystallization -- 5 Conclusions -- References -- Low-Temperature Mobility of Water in Sugar Glasses: Insights from Thermally Stimulated Current Study -- 1 Introduction -- 2 Materials and Methods -- 2.1 Materials -- 2.2 Thermally Stimulated Current -- 2.3 Differential Scanning Calorimetry (DSC) -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Functional Behavior ofDifferent Food Components asAffected by Water andPhysical State -- 1 Introduction -- 2 The Impact ofWater, Physical State, andMolecular Weight ontheDissolution ofCarbohydrates -- 3 The Impact ofWater andStructure onDissolution ofProteins -- 4 Conclusions -- References -- Effect ofDifferent Components ofEdible/Biodegradable Composite Films onWater Relationships inthePolymer Matrix -- 1 Introduction -- 2 Effect ofFilm Plasticizers onFilm Water Sorption Behavior -- 3 Effect ofLipids onWater Sorption Behavior ofHydrocolloid Films -- 4 Effect ofFilm Components onPhase Transitions -- 5 Final Remarks -- References -- Glass Transition Observed withCross-Linked Dextrans Containing aSmall Amount ofWater -- 1 Introduction -- 2 Materials andMethods -- 2.1 Materials. , 2.2 Sample Preparation -- 2.3 DSC Measurement -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Sensorially and Instrumentally Detected Antiplastizicing Effect of Water in Cornflakes -- 1 Introduction -- 2 Materials and Methods -- 2.1 Samples -- 2.2 Glass Transition Measurement -- 2.3 Molecular Mobility -- 2.4 Mechanical Properties -- 2.5 Oral Texture Profile -- 3 Results and Discussion -- 3.1 Glass Transition and Molecular Mobility -- 3.2 Mechanical Properties -- 3.3 Oral Texture Measurements -- 3.4 Integrated Results -- 4 Conclusions -- References -- Characterization of a Hydrate-Dehydrate System with Critical Transitions in theTypical Range of Processing and Storage Conditions -- 1 Introduction -- 2 Materials andMethods -- 3 Results andDiscussion -- 4 Conclusions -- References -- Viscoelastic Sorption Behavior ofStarch andGluten -- 1 Introduction -- 2 Materials andExperimental Methods -- 3 Model -- 3.1 Viscoelastic Diffusion -- 3.2 Boundary Conditions andIsotherm -- 3.3 Rheological Model -- 4 Results andDiscussion -- 4.1 Isotherms -- 4.2 Dynamical Sorption -- 5 Conclusions -- References -- Molecular Weight Effects onEnthalpy Relaxation andFragility ofAmorphous Carbohydrates -- 1 Introduction -- 2 Materials andMethods -- 2.1 Differential Scanning Calorimetry (DSC) -- 3 Results andDiscussion -- 3.1 Glass Transition Temperature vs.Aging Conditions -- 3.2 Molecular Weight Dependence ofEnthalpy RelaxationTime -- 3.3 Fragility ofAmorphous Carbohydrates -- 4 Conclusions -- References -- Effect ofDehydration Conditions ontheBulk andSurface Properties oftheResulting Dehydrated Products -- 1 Introduction -- 2 Materials andMethods -- 2.1 Materials -- 2.2 Preparation oftheHydrate, Dehydrated, andAnhydrous Forms -- 2.3 Preparation ofAnhydrousForm -- 2.4 X-ray Powder Diffraction (XRPD) -- 2.5 Differential Scanning Calorimetry (DSC). , 2.6 Scanning Electronic Microscopy (SEM) -- 3 Results andDiscussion -- 4 Conclusions -- References -- Moisture Sorption Isotherms of Foods: Experimental Methodology, Mathematical Analysis, and Practical Applications -- 1 Introduction -- 2 Moisture Sorption Isotherms -- 2.1 Monolayer Moisture Content -- 2.2 Temperature and Composition Effects on Moisture Sorption Properties -- 2.2.1 Chemical Composition and Moisture Sorption Properties -- 2.2.2 Effect of Temperature on Sorption Isotherms -- 3 Experimental Methods for the Determination of Moisture Sorption Isotherms -- 3.1 Static Methods -- 3.2 Dynamic Methods -- 3.2.1 Dynamic Vapor Sorption Method (DVS) -- 3.2.2 Dynamic Dew Point Isotherm Method (DDI) -- 4 Modeling Sorption Isotherms -- 4.1 Brunauer-Emmett-Teller (BET) Equation (Brunauer et al. 1938) -- 4.2 Guggenheim, Anderson, and De Boer (GAB) Equation (van den Berg and Bruins 1981) -- 4.3 Halsey Equation (Halsey 1948) -- 4.4 Henderson Equation (Henderson 1952) -- 4.5 Kühn Equation (Kühn 1964) -- 4.6 Oswin Equation (Oswin 1946) -- 4.7 Lewicki Equation (Lewicki 1998, 2000) -- 4.8 Smith Equation (Smith 1947) -- 4.9 Peleg Equation (Peleg 1993) -- 5 Analysis of Applicability for Modeling of Food Sorption Isotherms -- 6 Models Used to Describe Food Moisture Sorption Isotherms -- 7 Thermodynamic Properties: Sorption Heat, Enthalpy (DeltaH), and Entropy (DeltaS) -- 8 Applications of Moisture Sorption Isotherms -- 9 Sorption Isotherms and Shelf Life Predictions Considering Parameter Variability -- 10 Final Remarks -- References -- Understanding Cryopreservation of Oyster Oocytes from a Physical Chemistry Perspective -- 1 Introduction -- 2 Effect of Rate of Cooling -- 2.1 Cryopreservation of Oyster Oocytes -- 2.1.1 Assessment of IIF by Cryomicroscopy -- 2.1.2 Assessment of IIF by Transmission Electron Microscopy (TEM). , 2.1.3 The Effect of Cooling Rates, Holding Times, and Plunging Temperatures on IIF and Post-Thaw Fertilization -- 2.2 Liposomes as a Membrane Model System for Freezing Studies -- 2.2.1 Effect of Freezing Temperatures and Cooling Rates on the Stability of EPC LUV -- 2.2.2 EPC at Various Holding Temperatures -- 2.2.3 Effect of Freezing Temperatures and Cooling Rates on the Stability of DPPC LUV -- 2.2.4 DPPC LUV at Various Holding Temperatures -- 3 Overall Summary -- References -- The Role ofWater intheCryopreservation ofSeeds -- 1 Introduction -- 2 Relationships Between Seed Structure andStorage Behavior -- 3 Mechanisms Implicated inDesiccation Tolerance ofSeeds -- 4 Subzero Storage Temperatures ofSeeds -- 5 Cryopreservation ofCitrus Seeds: A Case Study -- 6 Conclusions -- References -- Water Activity and Microorganism Control: Past and Future -- 1 Introduction -- 2 Microbial Growth and aw -- 3 Microbial Survival/Inactivation and Impact of aw -- 4 Mechanism of Action of Osmotic Stress -- 5 Water Activity Control: Future -- References -- On Modeling theEffect ofWater Activity onMicrobial Growth andMortality Kinetics -- 1 Introduction -- 2 Microbial Growth Curves -- 3 Chemical Changes andMicrobial Inactivation -- 4 Probabilistic Models -- 5 Concluding Remarks andFuture Challenges -- References -- Importance of Halophilic and Halotolerant Lactic Acid Bacteria in Cheeses -- 1 Introduction -- 1.1 Water Activity and Chemical Composition of Cheeses -- 1.2 Models Involving Salt Concentration in Cheeses -- 1.3 General Roles of Salt in Cheese -- 1.4 Halophilic and Halotolerant Microorganisms -- 1.5 Halophilic Lactic Acid Bacteria in Cheeses -- 2 Halotolerant Lactic Acid Bacteria in Mexican Cheeses -- 3 Modeling of Halotolerance -- 4 Conclusions -- References -- Influence of Water Activity and Molecular Mobility on Peroxidase Activity in Solution. , 1 Introduction.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...