GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Physics - Simulation methods. ; Electronic books.
    Description / Table of Contents: From quantum mechanics to fluid dynamics, this 2007 book systematically treats the broad scope of computer modeling and simulations, describing fundamental theory, and possibilities and limitations of the models. Practical guidance for applications and sample programs in Python are provided. For advanced undergraduates, graduates, and practitioners. Resources available at www.cambridge.org/9780521835275.
    Type of Medium: Online Resource
    Pages: 1 online resource (626 pages)
    Edition: 1st ed.
    ISBN: 9780511294112
    DDC: 530.011
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- Symbols, units and constants -- Symbols -- Units -- SI Units -- Atomic units -- Molecular units -- Physical constants -- Part I A Modeling Hierarchy for Simulations -- 1 Introduction -- 1.1 What is this book about? -- 1.1.1 Simulation of real systems -- 1.1.2 System limitation -- 1.1.3 Sophistication versus brute force -- 1.2 A modeling hierarchy -- 1.3 Trajectories and distributions -- 1.4 Further reading -- 2 Quantum mechanics: principles and relativistic effects -- 2.1 The wave character of particles -- 2.2 Non-relativistic single free particle -- 2.3 Relativistic energy relations for a free particle -- 2.4 Electrodynamic interactions -- 2.4.1 Homogeneous external magnetic field -- 2.4.2 Electromagnetic plane wave -- 2.5 Fermions, bosons and the parity rule -- Exercises -- 3 From quantum to classical mechanics: when and how -- 3.1 Introduction -- 3.2 From quantum to classical dynamics -- 3.3 Path integral quantum mechanics -- 3.3.1 Feynman's postulate of quantum dynamics -- 3.3.2 Equivalence with the Schrödinger equation -- 3.3.3 The classical limit -- 3.3.4 Evaluation of the path integral -- 3.3.5 Evolution in imaginary time -- 3.3.6 Classical and nearly classical approximations -- 3.3.7 The free particle -- 3.3.8 Non-interacting particles in a harmonic potential -- 3.3.9 Path integral Monte Carlo and molecular dynamics simulation -- 3.4 Quantum hydrodynamics -- 3.4.1 The hydrodynamics approach -- 3.4.2 The classical limit -- 3.5 Quantum corrections to classical behavior -- 3.5.1 Feynman-Hibbs potential -- 3.5.2 The Wigner correction to the free energy -- 3.5.3 Equivalence between Feynman-Hibbs and Wigner corrections -- 3.5.4 Corrections for high-frequency oscillators -- 3.5.5 The fermion-boson exchange correction -- Exercises. , 4 Quantum chemistry: solving the time-independent Schrödinger equation -- 4.1 Introduction -- 4.2 Stationarysolutions of the TDSE -- 4.3 The few-particle problem -- 4.3.1 Shooting methods -- 4.3.2 Expansion on a basis set -- 4.3.3 Variational Monte Carlo methods -- 4.3.4 Relaxation methods -- 4.3.5 Diffusional quantum Monte Carlo methods -- 4.3.6 A practical example -- 4.3.7 Green's function Monte Carlo methods -- 4.3.8 Some applications -- 4.4 The Born-Oppenheimer approximation -- 4.5 The many-electron problem of quantum chemistry -- 4.6 Hartree-Fock methods -- 4.7 Density functional theory -- 4.8 Excited-state quantum mechanics -- 4.9 Approximate quantum methods -- 4.10 Nuclear quantum states -- 5 Dynamics of mixed quantum/classical systems -- 5.1 Introduction -- 5.2 Quantum dynamics in a non-stationary potential -- 5.2.1 Integration on a spatial grid -- 5.2.2 Time-independent basis set -- 5.2.3 Time-dependent basis set -- 5.2.4 The two-level system -- 5.2.5 The multi-level system -- 5.3 Embedding in a classical environment -- 5.3.1 Mean- eld back reaction -- 5.3.2 Forces in the adiabatic limit -- 5.3.3 Surface hopping dynamics -- 5.3.4 Other methods -- Exercises -- 6 Molecular dynamics -- 6.1 Introduction -- 6.2 Boundary conditions of the system -- 6.2.1 Periodic boundary conditions -- 6.2.2 Continuum boundary conditions -- 6.2.3 Restrained-shell boundary conditions -- 6.3 Force field descriptions -- 6.3.1 Ab-Initio molecular dynamics -- 6.3.2 Simple molecular force fields -- 6.3.3 More sophisticated force fields -- 6.3.4 Long-range dispersion interactions -- 6.3.5 Long-range Coulomb interactions -- 6.3.6 Polarizable force fields -- 6.3.7 Choices for polarizability -- 6.3.8 Energies and forces for polarizable models -- 6.3.9 Towards the ideal force field -- 6.3.10 QM/MM approaches -- 6.4 Solving the equations of motion -- 6.4.1 Constraints. , 6.5 Controlling the system -- 6.5.1 Stochastic methods -- 6.5.2 Strong-coupling methods -- 6.5.3 Weak-coupling methods -- 6.5.4 Extended system dynamics -- 6.5.5 Comparison of thermostats -- 6.6 Replica exchange method -- 6.7 Applications of molecular dynamics -- Exercises -- 7 Free energy, entropy and potential of mean force -- 7.1 Introduction -- 7.2 Free energy determination by spatial integration -- 7.3 Thermodynamic potentials and particle insertion -- 7.4 Free energy by perturbation and integration -- 7.5 Free energy and potentials of mean force -- 7.6 Reconstruction of free energy from PMF -- 7.6.1 Harmonic wells -- 7.7 Methods to derive the potential of mean force -- 7.8 Free energy from non-equilibrium processes -- 7.8.1 Proof of Jarzynski's equation -- 7.8.2 Evolution in space only -- 7.8.3 Requirements for validity of Jarzynski's equation -- 7.8.4 Statistical considerations -- 8 Stochastic dynamics: reducing degrees of freedom -- 8.1 Distinguishing relevant degrees of freedom -- 8.2 The generalized Langevin equation -- 8.3 The potential of mean force -- 8.4 Superatom approach -- 8.5 The fluctuation-dissipation theorem -- 8.6 Langevin dynamics -- 8.6.1 Langevin dynamics in generalized coordinates -- 8.6.2 Markovian Langevin dynamics -- 8.7 Brownian dynamics -- 8.8 Probability distributions and Fokker-Planck equations -- 8.8.1 General Fokker-Planck equations -- 8.8.2 Application to generalized Langevin dynamics -- 8.8.3 Application to Brownian dynamics -- 8.9 Smart Monte Carlo methods -- 8.10 How to obtain the friction tensor -- 8.10.1 Solute molecules in a solvent -- 8.10.2 Friction from simulation -- Exercises -- 9 Coarse graining from particles to .uid dynamics -- 9.1 Introduction -- 9.2 The macroscopic equations of fluid dynamics -- 9.2.1 Conservation of mass -- 9.2.2 The equation of motion -- 9.2.3 Conservation of linear momentum. , 9.2.4 The stress tensor and the Navier-Stokes equation -- 9.2.5 The equation of state -- 9.2.6 Heat conduction and the conservation of energy -- 9.3 Coarse graining in space -- 9.3.1 Definitions -- 9.3.2 Stress tensor and pressure -- 9.3.3 Conservation of mass -- 9.3.4 Conservation of momentum -- 9.3.5 The equation of motion -- 9.4 Conclusion -- Exercises -- 10 Mesoscopic continuum dynamics -- 10.1 Introduction -- 10.2 Connection to irreversible thermodynamics -- 10.3 The mean field approach to the chemical potential -- 11 Dissipative particle dynamics -- 11.1 Representing continuum equations by particles -- 11.2 Prescribing fluid parameters -- 11.3 Numerical solutions -- 11.4 Applications -- Part II Physical and Theoretical Concepts -- 12 Fourier transforms -- 12.1 Definitions and properties -- 12.2 Convolution and autocorrelation -- 12.3 Operators -- 12.4 Uncertainty relations -- 12.5 Examples of functions and transforms -- 12.5.1 Square pulse -- 12.5.2 Triangular pulse -- 12.5.3 Gaussian function -- 12.6 Discrete Fourier transforms -- 12.7 Fast Fourier transforms -- 12.8 Autocorrelation and spectral density from FFT -- 12.9 Multidimensional Fourier transforms -- Exercises -- 13 Electromagnetism -- 13.1 Maxwell's equation for vacuum -- 13.2 Maxwell's equation for polarizable matter -- 13.3 Integrated form of Maxwell's equations -- 13.4 Potentials -- 13.5 Waves -- 13.6 Energies -- 13.7 Quasi-stationary electrostatics -- 13.7.1 The Poisson and Poisson-Boltzmann equations -- 13.7.2 Charge in a medium -- 13.7.3 Dipole in a medium -- 13.7.4 Charge distribution in a medium -- 13.7.5 The generalized Born solvation model -- 13.8 Multipole expansion -- 13.8.1 Expansion of the potential -- 13.8.2 Expansion of the source terms -- 13.9 Potentials and fields in non-periodic systems -- 13.10 Potentials and fields in periodic systems of charges. , 13.10.1 Short-range contribution -- 13.10.2 Long-range contribution -- 13.10.3 Gaussian spread function -- 13.10.4 Cubic spread function -- 13.10.5 Net dipolar energy -- 13.10.6 Particle-mesh methods -- 13.10.7 Potentials and fields in periodic systems of charges and dipoles -- Exercises -- 14 Vectors, operators and vector spaces -- 14.1 Introduction -- 14.2 Definitions -- 14.3 Hilbert spaces of wave functions -- 14.4 Operators in Hilbert space -- 14.5 Transformations of the basis set -- 14.6 Exponential operators and matrices -- 14.6.1 Example of a degenerate case -- 14.7 Equations of motion -- 14.7.1 Equations of motion for the wave function and its representation -- 14.7.2 Equation of motion for observables -- 14.8 The density matrix -- 14.8.1 The ensemble-averaged density matrix -- 14.8.2 The density matrix in coordinate representation -- 15 Lagrangian and Hamiltonian mechanics -- 15.1 Introduction -- 15.2 Lagrangian mechanics -- 15.3 Hamiltonian mechanics -- 15.4 Cyclic coordinates -- 15.5 Coordinate transformations -- 15.6 Translation and rotation -- 15.6.1 Translation -- 15.6.2 Rotation -- 15.7 Rigid body motion -- 15.7.1 Description in terms of angular velocities -- 15.7.2 Unit vectors -- 15.7.3 Euler angles -- 15.7.4 Quaternions -- 15.8 Holonomic constraints -- 15.8.1 Generalized coordinates -- 15.8.2 Coordinate resetting -- 15.8.3 Projection methods -- 16 Review of thermodynamics -- 16.1 Introduction and history -- 16.2 Definitions -- 16.2.1 Partial molar quantities -- 16.3 Thermodynamic equilibrium relations -- 16.3.1 Relations between partial differentials -- 16.4 The second law -- 16.5 Phase behavior -- 16.6 Activities and standard states -- 16.6.1 Virial expansion -- 16.7 Reaction equilibria -- 16.7.1 Proton transfer reactions -- 16.7.2 Electron transfer reactions -- 16.8 Colligative properties -- 16.9 Tabulated thermodynamic quantities. , 16.10 Thermodynamics of irreversible processes.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...