GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Mass budget (Geophysics). ; Electronic books.
    Description / Table of Contents: Land and sea ice combined form the largest part of the Earth's cryosphere, responding to climate change over timescales ranging from seasons to millennia. This is a detailed and comprehensive overview of the observation and modelling of present and predicted future trends in the mass balance of ice on Earth.
    Type of Medium: Online Resource
    Pages: 1 online resource (664 pages)
    Edition: 1st ed.
    ISBN: 9780511187636
    DDC: 551.31
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- 1 Introduction and background -- 1.1 Aims and objectives of the book -- 1.2 Importance of the cryosphere in the Earth system -- 1.2.1 Sea level -- 1.2.2 Ice-ocean-atmosphere feedbacks -- 1.3 Timescales of variability -- 1.4 Geographical context -- References -- Part I Observational techniques and methods -- 2 In situ measurement techniques: land ice -- 2.1 Introduction -- 2.2 Mass balance equations -- 2.3 Direct measurement of surface elevation change -- 2.3.1 Traditional surveying methods -- 2.3.2 Cartographic method: comparison of topographic maps from different years -- 2.3.3 Repeated altitude profiles by GPS -- 2.3.4 Coffee-can method -- 2.4 Measurement of mass balance components -- 2.4.1 Accumulation and ablation rate -- Stake readings -- Index methods -- Pit studies, firn and ice cores -- Annual cycles - oxygen isotopes, dust, chemistry -- Reference layers -- Automatic registrations -- Ground-penetrating radar (GPR) -- 2.4.2 Superimposed ice and internal accumulation -- 2.4.3 Error analysis -- 2.4.4 Balance velocity -- 2.4.5 Calving -- 2.4.6 Bottom mass balance (floating glaciers and ice shelves) -- Upward-pointing echo sounder -- Thickness change in bore holes, combined with strain-rate and surface balance measurements -- Mass flux divergence calculations -- The cavity beneath the glacier -- 2.5 Local mass balance equation -- 2.6 Conclusion -- References -- 3 In situ measurement techniques: sea ice -- 3.1 Current techniques -- 3.1.1 Submarine sonar profiling -- 3.1.2 Moored upward sonars -- 3.1.3 Airborne laser profilometry -- 3.1.4 Airborne electromagnetic techniques -- 3.1.5 Drilling -- 3.2 Possible future techniques -- 3.2.1 Sonar on AUVs and floats -- 3.2.2 Acoustic tomography -- 3.2.3 The use of microwave sensors -- References. , 4 Remote-sensing techniques -- 4.1 Introduction -- 4.2 Electromagnetic theory and basic principles -- 4.3 Satellites and sensors -- 4.3.1 Visible and infra-red sensors -- Landsat -- SPOT -- ASTER -- AVHRR -- 4.3.2 Synthetic aperture radars and scatterometers -- 4.3.3 Satellite altimetry -- Atmospheric corrections -- Orbits -- CryoSat -- The ice, clouds and elevation satellite, ICESat -- 4.3.4 Passive microwave radiometers (PMRs) -- 4.4 Land-ice mass balance -- 4.4.1 Direct measurement of volume changes -- Radar altimetry -- Laser altimetry -- Other methods of determining volume change -- 4.4.2 Measurement of mass balance components: budget approach -- Accumulation rates -- Ablation -- Iceberg calving -- Bottom mass balance of floating ice -- Grounding-line fluxes -- Determination of ice thickness -- Velocity and grounding-line estimation -- 4.4.3 Balance velocities and fluxes -- 4.5 Sea-ice mass balance: introduction -- 4.5.1 Sea-ice coverage - extent, concentration and type -- Retrieval of ice concentration and extent -- Ice types -- Ice types from passive microwave data -- Ice types from active microwave data -- 4.5.2 Sea-ice motion and deformation -- Retrieval of sea-ice motion -- High resolution ice motion from SAR -- Small-scale ice motion and deformation -- 4.5.3 Sea-ice thickness -- Radar altimetry -- Seasonal ice-thickness estimates from kinematics -- Ice surface temperature and ice thickness -- 4.6 Summary -- References -- Part II Modelling techniques and methods -- 5 Modelling land-ice surface mass balance -- 5.1 Introduction -- 5.2 The surface energy balance -- 5.2.1 Introduction -- 5.2.2 The incoming short-wave radiative flux -- 5.2.3 Surface albedo -- 5.2.4 The incoming long-wave radiative flux -- 5.2.5 The outgoing long-wave radiative flux -- 5.2.6 The fluxes of sensible and latent heat -- 5.2.7 The heat flux supplied by rain. , 5.2.8 Subsurface processes -- 5.3 The degree-day approach -- 5.4 The mass balance in ablation models -- 5.5 Introduction to modelling the mass balance at the scale of glaciers -- 5.6 Ablation models -- 5.6.1 Grids and forcing -- 5.6.2 Validation -- 5.7 Atmospheric models -- 5.7.1 Introduction -- 5.7.2 Global and regional atmospheric circulation models -- 5.7.3 Atmospheric and surface physics in the models -- 5.7.4 Scales, resolution and computing cost -- 5.7.5 Model performances and biasses -- 5.7.6 Meteorological analyses and short-term forecasts -- 5.8 Regression models -- 5.9 Comparison of the different types of models -- 5.10 List of symbols -- References -- 6 Modelling land-ice dynamics -- 6.1 Introduction -- 6.2 Glacier dynamics -- 6.2.1 Force balance -- Driving stress -- Resistive stresses -- Force balance in the horizontal direction -- Force balance in the vertical direction -- 6.2.2 Flow law -- 6.2.3 Velocities and strain rates -- 6.2.4 Thermodynamics -- 6.2.5 Continuity -- 6.2.6 Basal sliding and bed deformation -- 6.3 Hierarchy of models -- 6.3.1 Introduction -- 6.3.2 Lamellar flow -- 6.3.3 Including lateral drag -- 6.3.4 Ice-shelf spreading -- 6.3.5 Ice shelf/ice sheet interaction -- 6.4 Evaluating terrestrial ice-mass models -- 6.4.1 Terminology -- 6.4.2 Types of ice-mass models -- Prognostic models -- Diagnostic models -- 6.4.3 Model validation -- The EISMINT inter-comparison -- EISMINT levels one and two -- EISMINT level three -- Conclusions -- 6.4.4 Model calibration and confirmation -- Confirming models of ice velocity -- Confirming models of ice-mass temperature -- The use of RES data to confirm models of glacier flow -- 6.5 List of symbols -- References -- 7 Modelling the dynamic response of sea ice -- 7.1 Introduction -- 7.2 Selected observational sea-ice motion: mechanical and physical characteristics. , 7.2.1 Sea-ice drift, deformation and pressure ridges -- 7.2.2 Ice stress and physical properties -- 7.3 Modelling sea-ice drift and deformation -- 7.3.1 Equations of motion -- 7.3.2 Deformation scaling of momentum equations -- 7.4 Sea-ice mechanics -- 7.4.1 Aggregate isotropic sea-ice constitutive laws -- 7.4.2 Coulombic and fracture-based isotropic models -- 7.4.3 Effect of plastic ice interaction on modelled ice drift -- A mechanistic one-dimensional plastic system -- Comparison of large-scale simulated plastic drift and deformation characteristics -- Improvement of simulations by including 'inertial imbedding' -- The effect of rheology on outflow -- 7.5 Sea-ice thermodynamics -- 7.5.1 Idealized growth: the Stefan problem -- 7.5.2 Empirical analytic sea-ice growth models for seasonal ice -- 7.5.3 Full heat budget thermodynamic models -- 7.5.4 Effects of internal brine pockets and variable conductivity -- 7.6 Ice-thickness distribution theory: dynamic thermodynamic coupling -- 7.6.1 Evolution equations for the ice-thickness distribution -- 7.6.2 Consistency of isotropic plastic models with ridge building -- 7.6.3 Characteristics of thickness distribution models coupled to specified deformation -- 7.6.4 Two-level ice-thickness distribution -- 7.6.5 Relative characteristics of two-level and multi-level models in numerical simulations -- 7.6.6 Thickness strength coupling: kinematic waves and inertial variability -- Kinematic waves in sea ice -- Inertial variability in sea-ice deformation -- Ice arching with growth and advection -- 7.6.7 Ice-tide interaction and stationary shore fast ice -- 7.7 A selected hierarchy of dynamic thermodynamic simulations of the evolution of sea ice -- 7.7.1 Selected characteristics of ice-ocean circulation models -- 7.7.2 Multiple equilibrium states of mechanistic dynamic thermodynamic sea-ice models. , 7.7.3 Arctic Basin variable thickness simulations -- Ridged ice and sensitivity to mechanical parameters -- The relative role of dynamics and thermodynamics in historical variability -- 7.7.4 The response of sea ice to climate change: the effect of ice dynamics -- 7.8 Concluding remarks -- References -- Part III The mass balance of sea ice -- 8 Sea-ice observations -- 8.1 Introduction -- 8.2 Sea-ice observations -- 8.3 Sea-ice observations: the pre-satellite era -- 8.4 Sea-ice cover: the post-satellite era -- 8.5 Mean ice thickness and its variability -- 8.6 Current evidence for change -- 8.7 Consequences of change -- 8.8 Future prospects -- References -- 9 Sea-ice modelling -- 9.1 Brief overview of sea-ice models -- 9.1.1 Momentum equation -- 9.1.2 Thermodynamics -- 9.1.3 Conservation equations -- 9.2 Mean thickness -- 9.2.1 Spatial and temporal variability -- 9.2.2 Ice export -- 9.2.3 Sensitivity to model parameterizations -- 9.3 Modelling future changes in sea-ice mass balance -- 9.4 Summary and conclusions -- References -- Part IV The mass balance of the ice sheets -- 10 Greenland: recent mass balance observations -- 10.1 Introduction -- 10.1.1 The polar ice sheets -- 10.1.2 Greenland and sea-level change -- 10.1.3 Program for Arctic Regional Climate Assessment (PARCA) -- 10.2 Components of ice-sheet mass balance -- 10.2.1 Accumulation -- 10.2.2 Surface ablation -- 10.2.3 Ice discharge -- 10.3 PARCA measurements -- 10.3.1 Snow-accumulation rates -- Shallow ice coring -- Accumulation rates from satellite microwave data -- Accumulation rates from atmospheric analyses -- 10.3.2 Ice depth sounding and layer tracking -- 10.3.3 Ice velocities and glacier grounding lines from SAR interferometry -- 10.3.4 Ice-surface characteristics from satellite data -- Summer melt zones -- Surface temperature and albedo -- Snow facies. , 10.3.5 Automatic weather station (AWS) network and meteorological observations.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...