GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-04
    Description:    Agricultural drainage is thought to alter greenhouse gas emissions from temperate peatlands, with CH 4 emissions reduced in favor of greater CO 2 losses. Attention has largely focussed on C trace gases, and less is known about the impacts of agricultural conversion on N 2 O or global warming potential. We report greenhouse gas fluxes (CH 4 , CO 2 , N 2 O) from a drained peatland in the Sacramento-San Joaquin River Delta, California, USA currently managed as a rangeland (that is, pasture). This ecosystem was a net source of CH 4 (25.8 ± 1.4 mg CH 4 -C m −2  d −1 ) and N 2 O (6.4 ± 0.4 mg N 2 O-N m −2  d −1 ). Methane fluxes were comparable to those of other managed temperate peatlands, whereas N 2 O fluxes were very high; equivalent to fluxes from heavily fertilized agroecosystems and tropical forests. Ecosystem scale CH 4 fluxes were driven by “hotspots” (drainage ditches) that accounted for less than 5% of the land area but more than 84% of emissions. Methane fluxes were unresponsive to seasonal fluctuations in climate and showed minimal temporal variability. Nitrous oxide fluxes were more homogeneously distributed throughout the landscape and responded to fluctuations in environmental variables, especially soil moisture. Elevated CH 4 and N 2 O fluxes contributed to a high overall ecosystem global warming potential (531 g CO 2 -C equivalents m −2  y −1 ), with non-CO 2 trace gas fluxes offsetting the atmospheric “cooling” effects of photoassimilation. These data suggest that managed Delta peatlands are potentially large regional sources of greenhouse gases, with spatial heterogeneity in soil moisture modulating the relative importance of each gas for ecosystem global warming potential. Content Type Journal Article Pages 1-15 DOI 10.1007/s10021-011-9411-4 Authors Yit Arn Teh, Environmental Change Research Group, School of Geography & Geosciences, University of St Andrews, St Andrews, KY16 9 AL Scotland, UK Whendee L. Silver, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94702, USA Oliver Sonnentag, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94702, USA Matteo Detto, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94702, USA Maggi Kelly, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94702, USA Dennis D. Baldocchi, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94702, USA Journal Ecosystems Online ISSN 1435-0629 Print ISSN 1432-9840
    Print ISSN: 1432-9840
    Electronic ISSN: 1435-0629
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...