GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-16
    Description: Having previously established that the hydrodynamic effect introduced by slug bubbles is more effective and economic in fouling amelioration in flat sheet MBRs (FSMBR) than conventional bubbling, this work is focused on its implementation in a commercial FSMBR. The overall objective is to enhance the hydrodynamic effect on fouling control through the use of two-stage large-sized bubble development (coalescence and split). Computational Fluid Dynamics (CFD) was used to predict hydrodynamic features and substantial agreement was observed with experimental measurements. The critical height for bubble development space was determined to be circa 250 mm. Slug bubbles could be introduced into 14 channels, resulting in 6 fold stronger shear stress than that from single bubbles. Energy demand could be reduced by circa 50% compared with industry average usage and the shear stresses developed would, for most applications, be sufficient to ameliorate fouling. Furthermore, the specific air demand per permeate would be halved. This article is protected by copyright. All rights reserved.
    Print ISSN: 0001-1541
    Electronic ISSN: 1547-5905
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...