GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-06
    Description: Landslide prediction is important for mitigating geohazards but is very challenging. In landslide evolution, displacement depends on the local geological conditions and variations in the controlling factors. Such factors have led to the “step-like” deformation of landslides in the Three Gorges Reservoir area of China. Based on displacement monitoring data and the deformation characteristics of the Baishuihe Landslide, an additive time series model was established for landslide displacement prediction. In the model, cumulative displacement was divided into three parts: trend, periodic, and random terms. These terms reflect internal factors (geological environmental, gravity, etc.), external factors (rainfall, reservoir water level, etc.), and random factors (uncertainties). After statistically analyzing the displacement data, a cubic polynomial model was proposed to predict the trend term of displacement. Then, multiple algorithms were used to determine the optimal support vector regression (SVR) model and train and predict the periodic term. The results showed that the landslide displacement values predicted based on data time series and the genetic algorithm (GA-SVR) model are better than those based on grid search (GS-SVR) and particle swarm optimization (PSO-SVR) models. Finally, the random term was accurately predicted by GA-SVR. Therefore, the coupled model based on temporal data series and GA-SVR can be used to predict landslide displacement. Additionally, the GA-SVR model has broad application potential in the prediction of landslide displacement with “step-like” behavior.
    Print ISSN: 1612-510X
    Electronic ISSN: 1612-5118
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...