GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-09-11)
    Abstract: Carotenoid production in some non-phototropic bacteria occurs in a light-dependent manner to protect cells from photo-oxidants. Knowledge regarding the transcriptional regulator involved in the light-dependent production of carotenoids of non-phototrophic bacteria has been mainly confined to coenzyme B 12 -based photo-sensitive regulator CarH/LitR family proteins belonging to a MerR family transcriptional regulator. In this study, we found that bacteria belonging to Micrococcales and Corynebacteriales exhibit light-dependent carotenoid-like pigment production including an amino acid-producer Corynebacterium glutamicum AJ1511. CrtR is a putative MarR family transcriptional regulator located in the divergent region of a carotenoid biosynthesis gene cluster in the genome of those bacteria. A null mutant for crtR of C . glutamicum AJ1511 exhibited constitutive production of carotenoids independent of light. A complemented strain of the crtR mutant produced carotenoids in a light-dependent manner. Transcriptional analysis revealed that the expression of carotenoid biosynthesis genes is regulated in a light-dependent manner in the wild type, while the transcription was upregulated in the crtR mutant irrespective of light. In vitro experiments demonstrated that a recombinant CrtR protein binds to the specific sequences within the intergenic region of crtR and crtE , which corresponds to −58 to −7 for crtE , and +26 to −28 for crtR with respect to the transcriptional start site, and serves as a repressor for crtE transcription directed by RNA polymerase containing SigA. Taken together, the results indicate that CrtR light-dependently controls the expression of the carotenoid gene cluster in C . glutamicum and probably closely related Actinobacteria .
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...