GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Cellular Biochemistry, Wiley, Vol. 85, No. 2 ( 2002-01), p. 279-294
    Abstract: Cultured rodent osteoblastic cells reiterate the phenotypic differentiation and maturation of osteoblasts seen in vivo. As previously shown, the human osteosarcoma cell line HOS 58 represents a differentiated stage of osteoblast development. The potential of HOS 58 for still further in vitro differentiation suggests the line can serve as a model of osteoblast maturation. Using this cell line, we have investigated the influence of 1,25‐(OH) 2 ‐D 3 (D 3 ), TGF‐beta and Dexamethasone (Dex) on proliferation and on the protein and mRNA levels of alkaline phosphatase (AP), procollagen 1 (Col 1), and osteocalcin (Oc), as well as mineralization during 28 days in culture. AP mRNA and protein were highly expressed throughout the culture period with further increase of protein AP activity at constant gene expression levels. A differentiation inhibiting effect of either TGF‐beta or Dex was seen. Col 1 was investigated without the use of ascorbic acid and showed only minor changes during culture time or stimulation. The gene expression for Oc increased continually whereas protein synthesis peaked at confluence and decreased thereafter. TGF‐beta and Dex treatments decreased Oc mRNA and protein levels. Stimulation by D3 was maximal at day 7 with a decrease thereafter. HOS 58 cells showed no mineralization capacity when stimulated with different agents, as measured by energy‐dispersive X‐ray microanalysis. This was not due to absence of Cbfa1 expression. In conclusion, the HOS 58 osteosarcoma cell line represents a differentiated cell line with highly expressed and physiologically regulated AP expression during further differentiation in culture. We observed a dissociation between osteocalcin gene expression and protein secretion which may contribute to the lack of mineralization in this cell line. J. Cell. Biochem. 85: 279–294, 2002. © 2002 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 0730-2312 , 1097-4644
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2002
    detail.hit.zdb_id: 1479976-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...