GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brocas, William M; Felis, Thomas; Gierz, Paul; Lohmann, Gerrit; Werner, Martin; Obert, J Christina; Scholz, Denis; Kölling, Martin; Scheffers, Sander R (2018): Last interglacial hydroclimate seasonality reconstructed from tropical Atlantic corals. Paleoceanography and Paleoclimatology, 33(2), 198-213, https://doi.org/10.1002/2017PA003216
    Publication Date: 2024-05-31
    Description: The seasonality of hydroclimate during past periods of warmer than modern global temperatures is a critical component for understanding future climate change scenarios. Although partially analogous to these scenarios, the last interglacial (LIG, Marine Isotope Stage 5e, ~127-117 ka) is a popular test-bed. We present coral d18O monthly resolved records from multiple Bonaire (southern Caribbean) fossil corals (Diploria strigosa) that date to between 130 and 118 ka. These records represent up to 37 years and cover a total of 105 years, offering insights into the seasonality and characteristics of LIG tropical Atlantic hydroclimate. Our coral d18O records and available coral Sr/Ca- sea surface temperature (SST) records reveal new insights into the variable relationship between the seasonality of tropical Atlantic seawater d18O (d18Oseawater) and SST. Coral d18O seasonality is found to coevolve with SST and insolation seasonality throughout the LIG, culminating in significantly higher than modern values at 124 and 126 ka. At 124 ka, we reconstruct a 2-month lead of the coral d18O vs. the Sr/Ca-SST annual cycle and increased d18Oseawater seasonality. A fully-coupled climate model simulates a concomitant increase of southern Caribbean Sea summer precipitation and depletion of summer d18Oseawater. LIG regional hydroclimate differed from today's semiarid climate with a minor rainy season during winter. Cumulatively our coral d18O, d18Oseawater and model findings indicate a mid-LIG northward expansion of the South American Intertropical Convergence Zone into the southern Caribbean Sea, highlighting the importance of regional aspects within reconstructions of LIG hydroclimate seasonality.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...