GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9781644900833
    Series Statement: Materials Research Foundations Series ; v.76
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- NASICON Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Machinery of SIBs -- 2.1 Storing the progression of NASICON materials -- 2.2 Cathode materials based on NASICON type -- 2.2.1 NASICON-type nanoparticles of Fe2(MoO4)3 wrapped with graphene -- 2.2.2 NASICON-type materials based on Na3V2(PO4)3 -- 2.2.3 NASICON-type materials based on Na3V2(PO4)2F3 and Na3V2(PO4)3 -- 2.2.4 NASICON-type materials of porous Na3V2(PO4)3 and NaTi2(PO4)3 -- 2.2.5 A negative electrode of Mg0.5Ti2(PO4)3 based NASICON materials -- 2.2.6 Numerous other NASICON cathode materials -- 2.3 Anode materials based on NASICON-type -- 2.3.1 NaTi2(PO4)3 (NTP) type anode materials -- 2.3.2 NaZr2(PO4)3 (NZP) type anode materials -- 2.3.3 Numerous other NASICON anode materials -- 2.4 Commercial prospects of NIB technologies -- Conclusions -- Acknowledgment -- References -- 2 -- Carbon Anodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Overview of SIBs electrode materials -- 3. Carbon anode materials for advanced SIBs -- 3.1 Graphite as anode for SIBs -- 3.2 Hard carbon as anode for SIBs -- 3.3 Graphene as anode for SIBs -- 3.4 Carbon nanofibers as anode for SIBs -- 3.5 Biomass-derived carbon as anode for SIBs -- 3.6 Heteroatom-doped carbon materials as anode for SIBs -- References -- 3 -- Organic Electrode Material for Sodium-Ion Batteries -- 1. Introduction -- 2. Molecular design of electrodes for organic sodium ion batteries -- 2.1 Organic electrodes constituting of C=O based reaction -- 2.1.1 Carbonyl compounds -- 2.1.2 Polyimides -- 2.1.3 Quinones -- 2.1.4 Carboxylates -- 2.1.5 Anhydrides -- 2.2 Organic electrodes based on doping reaction -- 2.2.1 Organic radical polymers -- 2.2.2 Conductive polymers -- 2.2.3 Conjugated microporous polymers -- 2.2.4 Organometallic polymers. , 2.3 Organic electrode constituting of C=N based reaction -- 2.3.1 Schiff bases -- 2.3.2 Pteridine derivatives -- 3. Electrode design for sodium-ion batteries -- 3.1 Molecular engineering -- 3.2 Polymerization -- 3.3 Combining with carbon (carbon hybrid) -- 3.4 Electrolyte modification -- 4 Future challenges -- References -- 4 -- Alloys for Sodium-Ion Batteries -- 1. Introduction -- 2. Sodium ion batteries anode materials -- 3. Hard carbon -- 4. Carbon nanostructures -- 5. Carbon and alloy-based material composites -- 6. Alloying reactions-based anode materials -- 6.1 P-based materials -- 6.1.1 Red phosphorous -- 6.1.2 Black phosphorous -- 7. Conversion based material -- 7.1 Metal oxides -- 7.2 Metal sulfides -- 8. Graphene -- Conclusion and challenges -- Acknowledgments -- References -- 5 -- Mn-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. History -- 3. Types -- 4. Sodium-ion batteries -- 5. Mn-based sodium-ion batteries -- References -- 6 -- Tin-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Sn-based anodes -- 3. Electrochemical performance -- 4. Structure and design -- 5. Performance -- 6. Thermal stability -- 7. Mechanism -- 8. Drawbacks -- 9. Factors affecting the capacity of Sn based sodium ion batteries -- Conclusion -- References -- 7 -- Conducting Polymer Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Energy depository technologies in static application -- 2.1 Pump hydroelectric depository (PHD) -- 2.2 Compressed air energy depository (CAED) -- 2.3 Electrochemical energy storage (EED) -- 3. Lithium-ion batteries (LIBs) -- 4. Beginning of new technology in the field of energy storage -- 4.1 Electrode material for SIBs -- 5. Polymer electrode material for the SIBs -- 5.1 Polyimides -- 6. Conducting polymers. , 6.1 Conducting polymer can provide electromagnetic shielding of electronic devices -- 6.2 It absorbs microwaves by using stealth technology -- 6.3 It can be used as a hole injecting electrode for OLEDs -- 6.4 Some conducting polymers are promising for field effect transistor (FET) -- 6.5 It can be used in display technology due to their electroluminescent property -- 7. Types of conductive polymer -- 7.1 Electrically conducting polymer -- 7.2 Doping in conductive polymer -- 7.3 Polyacetylene and polyphenylene as electrode material for the SIBs -- 7.4 Conjugated conductive polymer and charge storage mechanism -- 7.5 Non-conjugated conductive radical polymer -- 7.6 Inorganic nanoparticles-conducting polymer composite based battery electrodes -- 8. Why conducting polymer? -- 9. Functions of CPs -- 9.1 Merits and demerits of the conducting polymer -- Conclusion -- Acknowledgement -- References -- 8 -- Recent Progress in Electrode Materials for Sodium Ion Batteries -- 1. Introduction -- 2. History and working principal of SIB -- 3. Anode Materials for SIB -- 3.1 Metal Oxide Anode Materials -- 3.2 Alloy Anode Materials -- 4. Cathode Materials for SIBs -- 4.1 Layered Oxide Cathode Materials -- 4.2 Polyanionic Cathode Materials -- Conclusion -- References -- 9 -- Electrolytes for Na-O2 Batteries: Towards a Rational Design -- 1. Introduction -- 2. Na-O2 Batteries -- 3. Instability of electrolyte -- 4. The use of additives -- 5. Outlook -- Acknowledgements -- References -- 10 -- State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology -- 1. Introduction -- 2. Background -- 3. State-of-the-art or current status of SIBs -- 4. Hurdles in SIBs -- 5. Next-generation battery research -- 5.1 SexSy-based negative electrode materials (NEMs) -- 5.2 Na3M2(PO4)2F3 [M¼Ti, Fe, V] based NEMs. , 5.3 Inclusion of fluorinated ethylene carbonate (FEC) in the electrolyte -- 5.4 Efficient cycling process by Sb in SIBs -- 5.5 SnSb as NEMs -- 6. Economic perspective of SIBs -- 6.1 Battery Performance and Cost model (BatPaC model) -- 6.2 Cost of cathode -- 6.3 Cost of anode -- 6.4 Cost of electrolyte -- 6.5 Fluctuations or variation in price -- 6.6 Limitation of BatPaC model -- 7. A materialistic outlook of SIBs -- 8. Challenges of SIBs -- 8.1 Limitations and materialistic barriers -- 8.2 Challenges of NEMs -- 9. Future opportunities -- Acknowledgment -- References -- 11 -- Conducting Polymers for Sodium-Ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Doped and pure conducting polymer cathodes -- 2.2 Conducting polymer-based composite cathode -- 3. Applications on anode materials -- 3.1 Doped and pure conducting polymer anodes -- 3.2 Conducting polymer-based composite anode -- Conclusions & -- Outlooks -- Acknowledgment -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...