GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Atmospheres Vol. 104, No. D8 ( 1999-04-27), p. 9337-9359
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D8 ( 1999-04-27), p. 9337-9359
    Abstract: The Mount Pinatubo volcanic eruption in June 1991 had significant impact on stratospheric and tropospheric climate and circulation. Enhanced radiative heating caused by the aerosol absorption of solar and terrestrial radiation changed stratospheric temperature and circulation. Using the stratospheric mesospheric version of the Hamburg climate model MA/ECHAM4, we performed an interactive Pinatubo simulation with prognostic stratospheric aerosol. Interactive and noninteractive model results for the years 1991 and 1992 are compared with satellite data and in situ measurements. The on‐line calculated heating rates are in good agreement with radiation transfer models indicating maximum heating rates of about 0.3 K/d in October 1991. The dynamic feedback in the MA/ECHAM4 simulation is similar to observations. The model is able to reproduce the strengthening of the polar vortex in winter 1991/1992 and a minor warming in January. The importance of an interactive treatment of the volcanic cloud for the aerosol transport is evidenced by the analysis of effects such as aerosol lifting and meridional transport. In general, the model results agree well with observations from the northern midlatitudes, especially in the first months after the eruption. The MA/ECHAM4 model is successful in reproducing the formation of two distinct maxima in the optical depth but is unable to simulate the persistence of the tropical aerosol reservoir from the end of 1991. Better agreement may be achieved if the influence of the quasi‐biennial oscillation and ozone changes is also taken into account.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...