GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (60)
  • AtlantOS  (27)
  • Public Library of Science  (17)
  • Oxford Univ. Press  (16)
  • 1
    Publication Date: 2024-02-07
    Description: Food webs are central entities mediating processes and external pressures in marine ecosystems. They are essential to understand and predict ecosystem dynamics and provision of ecosystem services. Paradoxically, utilization of food web knowledge in marine environmental conservation and resource management is limited. To better understand the use of knowledge and barriers to incorporation in management, we assess its application related to the management of eutrophication, chemical contamination, fish stocks, and non-indigenous species. We focus on the Baltic, a severely impacted, but also intensely studied and actively managed semi-enclosed sea. Our assessment shows food web processes playing a central role in all four areas, but application varies strongly, from formalized integration in management decisions, to support in selecting indicators and setting threshold values, to informal knowledge explaining ecosystem dynamics and management performance. Barriers for integration are complexity of involved ecological processes and that management frameworks are not designed to handle such information. We provide a categorization of the multi-faceted uses of food web knowledge and benefits of future incorporation in management, especially moving towards ecosystem-based approaches as guiding principle in present marine policies and directives. We close with perspectives on research needs to support this move considering global and regional change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Overfishing and rapid environmental shifts pose severe challenges to the resilience and viability of marine fish populations. To develop and implement measures that enhance species’ adaptive potential to cope with those pressures while, at the same time, ensuring sustainable exploitation rates is part of the central goal of fisheries management. Here, we argue that a combination of biophysical modelling and population genomic assessments offer ideal management tools to define stocks, their physical connectivity and ultimately, their short-term adaptive potential. To date, biophysical modelling has often been confined to fisheries ecology whereas evolutionary hypotheses remain rarely considered. When identified, connectivity patterns are seldom explored to understand the evolution and distribution of adaptive genetic variation, a proxy for species’ evolutionary potential. Here, we describe a framework that expands on the conventional seascape genetics approach by using biophysical modelling and population genomics. The goals are to identify connectivity patterns and selective pressures, as well as putative adaptive variants directly responding to the selective pressures and, ultimately, link both to define testable hypotheses over species response to shifting ecological conditions and overexploitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-26
    Description: The semi-enclosed nature and estuarine characteristics, together with its strongly alternating bathymetry, make the Baltic Sea prone to much stronger interannual variations in the abiotic environment, than other spawning habitats of Atlantic cod (Gadus morhua). Processes determining salinity and oxygen conditions in the basins are influenced both by long term gradual climate change, e.g. global warming, but also by short-term meteorological variations and events. Specifically one main factor influencing cod spawning conditions, the advection of highly saline and well-oxygenated water masses from the North Sea, is observed in irregular frequencies and causes strong interannual variations in stock productivity. This study investigates the possibility to use the available hydrographic process knowledge to predict the annual spawning conditions for Eastern Baltic cod in its most important spawning ground, the Bornholm Basin, only by salinity measurements from a specific location in the western Baltic. Such a prediction could serve as an environmental early warning indicator to inform stock assessment and management. Here we used a hydrodynamic model to hindcast hydrographic property fields for the last 40+ years. High and significant correlations were found for months early in the year between the 33m salinity level in the Arkona Basin and the oxygen-dependent cod spawning environment in the Bornholm Basin. Direct prediction of the Eastern Baltic cod egg survival in the Bornholm Basin based on salinity values in the Arkona Basin at the 33 m depth level is shown to be possible for eggs spawned by mid-age and young females, which currently predominate the stock structure. We recommend to routinely perform short-term predictions of the Eastern Baltic cod spawning environment, in order to generate environmental information highly relevant for stock dynamics. Our statistical approach offers the opportunity to make best use of permanently existing infrastructure in the western Baltic to timely provide scientific knowledge on the spawning conditions of Eastern Baltic cod. Furthermore it could be a tool to assist ecosystem-based fisheries management with a cost-effective implementation by including the short term predictions as a simple indicator in the annual assessments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (〉60%) were also among the rarest (〈1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-25
    Description: Annual catches of Todarodes pacificus in Japan have gradually increased since the late 1980s. Paralarval abundances have also been higher since the late 1980s compared to the late 1970s and mid-1980s. Here is proposed a possible scenario for the recent stock increase based on changing environmental conditions. Based on trends in annual variations in stock and in larval abundances, catches are reviewed and potential spawning areas inferred, assuming that egg masses and hatchlings occur over the continental shelf at temperatures between 15 and 23°C. Changes are then inferred in the spawning areas during 1984–1995, based on GIS data. Since the late 1980s, the autumn and winter spawning areas in the Tsushima Strait and near the Goto Islands appear to have overlapped, and winter spawning sites seem to have expanded over the continental shelf and slope in the East China Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-08
    Description: The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from 〉40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-13
    Description: Prior to the 3rd annual meeting in month 32 a project progress report for the external project boards will be prepared to enable them to as good as possible prepared for the meeting and to ensure consequently that AtlantOS receives as constructive as possible recommendations from the board. The report together with the external summary board meeting report will be part of D11.6
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...