GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2018-10-02
    Description: This paper looks at the marine science-policy landscape and brings together different policy discussions aimed at the development of a European Ocean Observing System, in the context of AtlantOS and how this relates to wider Atlantic and global policy drivers and existing and emerging wider ocean observation coordination. It has a European focus, looking at proposed mechanisms and components for ocean coordination and governance and the potential contribution of existing organizations and initiatives. The report serves as a reference document for, and contribution to, the European Strategy on Atlantic Ocean Observing and international BluePrint for an integrated Atlantic Ocean Observing System.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-01-31
    Description: In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D8.3 . AtlantOS, 29 pp.
    Publication Date: 2019-03-11
    Description: The model SEAPODYM (Spatial Ecosystem And Population Dynamics) has now reached a degree of maturity allowing to use it for testing management scenarios and to implement operational monitoring. It is proposed to implement an operational forecast system for the Atlantic albacore tuna. The system will use physical field (temperature, currents and primary production) from Copernicus CMEMS. The sensitivity to improved physical variables with data assimilation will be analysed and the interest of this operational production of tuna stock distributions evaluated in collaboration with colleagues involved in the management of tuna fisheries at ICCAT and FAO, and the AtlantOS fitness for this modelling analysed [D8.9]
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-03-18
    Description: In marine climate change research, salinity shifts have been widely overlooked. While widespread desalination effects are expected in higher latitudes, salinity is predicted to increase closer to the equator. Here, we use the steep salinity gradient of the Baltic Sea as a space‐for time design to address effects of salinity change on populations. Additionally, genetic diversity, a prerequisite for adaptive responses, is reduced in Baltic compared to Atlantic populations. On the one hand, adaptive transgenerational plasticity (TGP) might buffer the effects of environmental change, which may be of particular importance under reduced genetic variation. On the other hand, physiological trade‐offs due to environmental stress may hamper parental provisioning to offspring thereby intensifying the impact of climate change across generations (non‐adaptive TGP). Here, we studied both hypothesis of adaptive and non‐adaptive TGP in the three‐spined stickleback (Gasterosteus aculeatus) fish model along the strong salinity gradient of the Baltic Sea in a space‐for‐time experiment. Each population tolerated desalination well, which was not altered by parental exposure to low salinity. Despite a common marine ancestor, populations locally adapted to low salinity lost their ability to cope with fully marine conditions, resulting in lower survival and reduced relative fitness. Negative transgenerational effects were evident in early life stages, but disappeared after selection via mortality occurred during the first 12‐30 days post hatch. Modeling various strengths of selection, we showed that non‐adaptive transgenerational plasticity accelerated evolution by increasing directional selection within the offspring generation. Qualitatively, when genetic diversity is large, we predict that such effects will facilitate rapid adaptation and population persistence, while below a certain threshold populations suffer a higher risk of local extinction. Overall, our results suggest that transgenerational plasticity and selection are not independent of each other and thereby highlight a current gap in TGP studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-06
    Description: The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-01
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 121 (3). pp. 1405-1424.
    Publication Date: 2019-09-23
    Description: A bottom-simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow-spreading ridge segment of the Mid Atlantic Ridge system. Here, heat flow is high (up to 330 mW m-2), increasing towards the ridge axis. The coinciding maxima in across-margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic-rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D7.13 . AtlantOS, 28 pp.
    Publication Date: 2018-06-13
    Description: Report on biological EOVs using newly defined habitats of the North Atlantic
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D5.1 . AtlantOS, 39 pp.
    Publication Date: 2019-05-28
    Description: Report on the current observing status in the North Atlantic subpolar gyre and the South Atlantic subtropical gyre, containing the results of the investigation on regional observing activities, systems, and connectivity in relation to climate and ecosystems
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-01-31
    Description: Distinct differences were observed in geochemical signatures in sediments from two sites drilled in the upper plate of the Costa Rica margin during Integrated Ocean Drilling Program (IODP) Expedition 334. The upper 80 m at Site U1379, located on the outer shelf, show pore water non‐steady state conditions characteristic of a declining methane flux. These contrast with analyses of the upper sediment layers at the middle slope site (U1378) that reflect steady state conditions. Distinct carbonate‐rich horizons up to 11 meters thick were recovered between 63 and 310 meters below seafloor at Site U1379 but were not found at Site U1378. The carbonates and dissolved inorganic carbon from Site U1379 have a depleted carbon stable isotope signal (up to ‐25‰) that indicates anaerobic methane oxidation. This inference is further supported by distinct δ34S‐pyrite and magnetic susceptibility records that reveal fluctuations of the sulfate‐methane transition in response to methane flux variations. Tectonic reconstructions of this margin document a marked subsidence event after arrival of the Cocos Ridge, 2.2 ± 0.2 million years ago (Ma), followed by increased sedimentation rates and uplift. As the seafloor at Site U1379 rose from ~2000 m to the present water depth of ~126 m, the site moved out of the gas hydrate stability zone (GHSZ) at ~1.1 Ma, triggering upward methane advection, methane oxidation, and the onset of massive carbonate formation. Younger carbonate occurrences and the non‐steady state pore profiles at Site U1379 reflect continued episodic venting likely modulated by changes in the underlying methane reservoir.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...