GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (24)
  • GFZ German Research Centre for Geosciences  (9)
  • ELSEVIER SCIENCE BV  (8)
  • Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung  (7)
  • 2015-2019  (24)
  • 11
    Publication Date: 2015-03-25
    Description: Detailed monitoring of subterranean microclimatic and hydrological conditions can delineate factors influencing speleothem-based climate proxy data and helps in their interpretation. Multi-annual monitoring of water stable isotopes, air temperature, relative humidity, drip rates and PCO2 in surface, soil and cave air gives detailed insight into dripwater isotopes, temperature and ventilation dynamics in Mawmluh Cave, NE India. Water isotopes vary seasonally in response to monsoonal rainfall. Most negative values are observed during late Indian Summer Monsoon (ISM), with a less than one-month lag between ISM rainfall and drip response. Two dry season and two less-well distinguishable wet season dynamic ventilation regimes are identified in Mawmluh Cave. Cave air temperatures higher than surface air result in chimney ventilation during dry season nights. Dry season days show reduced ventilation due to cool cave air relative to surface air and cold-air lake development. Both, high water flow and cooler-than-surface cave air temperatures result in air inflow during wet season nights. Wet season daytime ventilation is governed by river flow, but is prone to stagnation and development of cold air lakes. CO2 monitoring indicates that PCO2 levels vary at diurnal to annual scale. Mawmluh Cave seems to act as CO2 sink during part of the dry season. While very likely, additional data is needed to establish whether wet season cave air CO2 levels rise above atmospheric values. Drip behavior is highly nonlinear, related to effective recharge dynamics, and further complicated by human influence on the epikarst aquifer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    Publication Date: 2020-02-12
    Description: In our meeting Dynamic Earth – from Alfred Wegener to today and beyond we will review how Wegener‘s findings evolved into to modern Earth system science including its impact on climate and the Earth surface, and how this system affects our daily life: where humans live, what risks we are exposed to, where we find our resources. In the meeting we will hold sessions that cover the entire geoscience spectrum (from mineral physics over solid earth geodynamics to the climate sciences) and that explore the consequences of Wegeners findings on how humans use our planet today (from energy and mineral resources over georisks to utilisation of the subsurface and materials for modern society). We have invited keynote speakers that are eminent international scientists in these fields. In events open to the general public we will get an account of Wegeners final trip to Greenland on the history of science of his hypothesis.
    Language: English , German
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
    In:  EPIC3Communications and Media Relations, Bremerhaven, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 17 p.
    Publication Date: 2019-02-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Outreach , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
    In:  EPIC3Communications and Media Relations, Bremerhaven, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 17 p.
    Publication Date: 2016-06-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Outreach , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
    In:  EPIC3Communications and Media Relations, Bremerhaven, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 17 p.
    Publication Date: 2017-07-25
    Repository Name: EPIC Alfred Wegener Institut
    Type: Outreach , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-09-16
    Description: Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-12
    Description: In summer 2017, the ICDP SUSTAIN project (Surtsey Underwater volcanic System for Thermophiles, Alteration processes and INnovative concretes), drilled three cored boreholes (Table 1) through Surtsey at sites ≤10 m from a cored hole obtained in 1979. Drilling through the still hot volcano was carried out with an Atlas Copco CS1000 drill rig, whose components were transported by helicopter to Surtsey and re-assembled on site. The first vertical borehole, SE-02a, was cored in HQ diameter to 152 meters below surface (m b.s.) during August 7-16. It was terminated due to borehole collapse. A second vertical (SE-02b) cored borehole was then drilled in HQ diameter to 192 m during August 19-26. Wireline borehole logging in SE-02b was performed August 26. The anodized NQ-sized aluminum tubing of the Surtsey Subsurface Observatory was installed in SE-02b to 181 m depth on August 27. A third borehole, SE-03, angled 35° from vertical and directed 264°, was drilled from August 28 to September 4 and reached a measured depth of 354 m (~290 m vertical depth) under the eastern crater. The core is HQ diameter to a measured depth of 213 m and NQ diameter from 213-354 m measured depth. The core traverses the deep conduit and intrusions of the volcano to a total vertical depth of 290 m b.s. Seawater drilling fluid for boreholes SE-02a and SE-02b was filtered and doubly UV-sterilized at the drill site. No mud products were employed while coring SE-02a, while small amounts of attapulgite mud were used in SE-02b and SE-03. Core samples for geochemical analyses of pore water and microbiological investigations were collected on site from all three boreholes. About 650 m of core was transported by helicopter to Heimaey, 18 km northeast of Surtsey, to a processing laboratory where the core was scanned, documented, and described. Additional core processing has taken place at the Náttúrufraedistofnun Íslands, the Icelandic Institute of Natural History in Gardabaer, where both the 1979 and 2017 cores are stored.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-12
    Description: This publication is a result of the 14th TRACE conference (Tree Rings in Archaeology, Climatology and Ecology) organized by the Department Physical, Chemical and Natural Systems of the University Pablo de Olavide (UPO) and the Association for Tree-ring Research (ATR), in collaboration with Pyrenean Institute of Ecology-Spanish National Research Council (IPE-CSIC), University of Barcelona (UB), Forest and Wood Technology Research Centre (CETEMAS) and University of Valladolid (UVa). The TRACE 2015 conference was held on May 20-23, 2015 for the first time in the Iberian Peninsula, in Sevilla, Spain.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report
    Publication Date: 2020-04-08
    Description: This publication is a result of the 15th TRACE conference „Tree Rings in Archaeology, Climatologyand Ecology” organized by the University of Silesia, Silesian Botanical Garden, University ofWrocław, Forest Research Institute and Białowieża National Park. The conference was held onMay 11th – 15th, 2016 in Białowieża, Poland, in the heart of the Białowieża Forest, the last naturalforest in the European Lowlands, a UNESCO World Heritage Site and Biosphere Reserve. University Pablo de Olavide (UPO) and the Association for Tree-ring Research (ATR), in collaboration with Pyrenean Institute of Ecology-Spanish National Research Council (IPE-CSIC), University of Barcelona (UB), Forest and Wood Technology Research Centre (CETEMAS) and University of Valladolid (UVa). The TRACE 2015 conference was held on May 20-23, 2015 for the first time in the Iberian Peninsula, in Sevilla, Spain.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  EPIC3GeoBerlin2015 - Dynamic Earth from Alfred Wegener to today and beyond. Annual Meeting of DGGV and DMG, Berlin, Germany, 2015-10-04-2015-10-07Berlin, GFZ German Research Centre for Geosciences
    Publication Date: 2015-10-13
    Description: Recent mobilisation of soil organic matter (SOM) in permafrost of the northern high latitudes is thought to have a significant impact on the carbon balance in the atmosphere. However, the environmental processes which influence SOM accumulation and remobilisation still need to be investigated more accurately. This study investigates the quantity and quality of SOM on Herschel Island in the western Canadian Arctic in relation to various landscape characteristics. To reach this goal, soil moisture, total organic carbon (TOC) and total nitrogen (TN) contents, stable carbon isotopes (∂¹³C) and TOC/TN ratios (C/N) were determined on 128 samples from twelve sediment cores reaching up to 250 cm depth. Drilling locations were chosen based on morphology, vegetation and soil properties and supported by satellite imagery and air photos. Seasonal thaw depths (active layer depths) correlate with ground disturbance and vegetation cover and lie between 20 and 100 cm. Well-preserved SOM is accumulated in the active layer and subjacent ice-rich permafrost of wet polygonal tundra. Uplands, hummocky tussock tundra and alluvial fans cover more than 50 % of the island and show heterogeneous SOM storage characteristics with considerable TOC contents being limited to the active layer. Disturbed areas with slope gradients greater than 6° show strong SOM degradation with low TOC contents throughout the active layer and permafrost strata. Linear regression and principal component analysis (PCA) shows that a decreasing SOM content is driven by increasing ground disturbance and reduced vegetation cover. Improved drainage decreases the preservation of SOM in the active layer. Future deepening of the active layer because of increasing temperatures and ground disturbance will remobilise SOM stored in ice-rich permafrost. This might increase carbon dioxide and methane emissions from permafrost landscapes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...