GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AtlantOS  (28)
  • Copernicus Publications (EGU)  (18)
  • Wuppertal : Wuppertal Institute for Climate, Environment and Energy  (13)
  • WILEY-BLACKWELL PUBLISHING  (12)
  • MDPI  (10)
  • IAMSLIC
  • PANGAEA
  • 2015-2019  (89)
  • 1990-1994  (4)
  • 1
    Publication Date: 2021-02-08
    Description: This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and the potential impacts of global environmental change. A comprehensive model description of the new model version, LPJmL4, is provided in a companion paper (Schaphoff et al., 2018c). Here, we provide a full picture of the model performance, going beyond standard benchmark procedures and give hints on the strengths and shortcomings of the model to identify the need for further model improvement. Specifically, we evaluate LPJmL4 against various datasets from in situ measurement sites, satellite observations, and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model to simulate stocks and flows of carbon and water in natural and managed ecosystems at different temporal and spatial scales. We show that an advanced phenology scheme improves the simulation of seasonal fluctuations in the atmospheric CO2 concentration, while the permafrost scheme improves estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied open source through https://gitlab.pik-potsdam.de/lpjml/LPJmL. We hope that this will lead to new model developments and applications that improve the model performance and possibly build up a new understanding of the terrestrial biosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-10
    Description: The innovative software system "myEcoCost" enables to gather and communicate resource and environmental data for products and services in global value chains. The system has been developed in the consortium of the European research project myEcoCost and forms a basis of a new, highly automated environmental accounting system für companies and consumers. The prototype of the system, linked to financial accounting of companies, was developed and tested in close collaboration with large and small companies. This brochure gives a brief introduction to the vision linked to myEcoCost: a network formed by collaborative environmental accounting nodes collecting environmental data at each step in a product's value chains. It shows why better life cycle data are needed and how myEcoCost addresses and solves this problem. Furthermore, it presents options for a future upscaling of highly automated environmenal accounting for prodcuts and services.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-09
    Description: 1. A resampling of 38 small farmland ponds in Belgium after 10 years revealed a high temporal species turnover for both phytoplankton and zooplankton communities, associated with substantial changes in abiotic factors, especially a reduction in total phosphorus concentration. 2. Across ponds, phytoplankton biomass decreased while evenness and richness increased between the samplings in 2003 and 2013. By contrast, the zooplankton assemblage was characterised by lower biomass, richness and evenness in 2013. Ponds experiencing larger environmental change showed stronger changes in phytoplankton richness and evenness. 3. Resource use efficiency (RUE) of zooplankton increased with greater environmental change and zooplankton evenness, which points to a switch towards species with higher RUE or greater variety in food sources in higher trophic levels. 4. As ponds are important habitats for freshwater biodiversity and ecosystems services, the strong but predictable species turnover and the opposing effects of environmental change on different trophic levels need to be embedded in conservation and management plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-18
    Description: 43rd IAMSLIC Annual Conference: Honolulu, Hawaii, USA, October 22-26, 2017
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-08-18
    Description: 46th IAMSLIC Annual Conference: 1st IAMSLIC Virtual Conference Online, 13-14 October 2020
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy
    Publication Date: 2022-11-10
    Description: "Transformative science" is a concept that delineates the new role of science for knowledge societies in the age of reflexive modernity. The paper develops the program of a transformative science, which goes beyond observing and analyzing societal transformations, but rather takes an active role in initiating and catalyzing change processes. The aim of transformative science is to achieve a deeper understanding of ongoing transformations and increased societal capacity for reflexivity with regard to these fundamental change processes. The concept of transformative science is grounded in an experimental paradigm, which has implications for (1) research, (2) education and learning, and (3) institutional structures and change in the science system. The article develops the theoretical foundations of the concept of transformative science and spells out the concrete implications in these three dimensions.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy
    Publication Date: 2019-01-31
    Description: Although it is not part of what has been called the "ambition mechanism" or "ratchet mechanism", Article 6 of the Paris Agreement also has an explicit requirement to promote ambition. Article 6 specifically highlights that some Parties choose to pursue voluntary cooperation in the implementation of their nationally determined contributions to allow for higher ambition in their mitigation and adaptation actions. Despite the common purpose, the two elements have to date been discussed mostly in isolation, both in the negotiations as well as in the wider literature. This JIKO Policy Paper sets out to change this by exploring the relationship between Article 6 and the Global Stocktake.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-19
    Description: 1. Reliable determination of organisms is a prerequisite to explore their spatial and temporal occurrence and to study their evolution, ecology, and dispersal. In Europe, Bavaria (Germany) provides an excellent study system for research on the origin and diversification of freshwater organisms including dinophytes, due to the presence of extensive lake districts and ice age river valleys. Bavarian freshwater environments are ecologically diverse and range from deep nutrient‐poor mountain lakes to shallow nutrient‐rich lakes and ponds. 2. We obtained amplicon sequence data (V4 region of small subunit‐rRNA, c. 410 bp long) from environmental samples collected at 11 sites in Upper Bavaria. We found 186 operational taxonomic units (OTUs) associated with Dinophyceae that were further classified by means of a phylogenetic placement approach. 3. The maximum likelihood tree inferred from a well‐curated reference alignment comprised a systematically representative set of 251 dinophytes, covering the currently known molecular diversity and OTUs linked to type material if possible. Environmental OTUs were scattered across the reference tree, but accumulated mostly in freshwater lineages, with 79% of OTUs placed in either Apocalathium, Ceratium, or Peridinium, the most frequently encountered taxa in Bavaria based on morphology. 4. Twenty‐one Bavarian OTUs showed identical sequences to already known and vouchered accessions, two of which are linked to type material, namely Palatinus apiculatus and Theleodinium calcisporum. Particularly within Peridiniaceae, delimitation of Peridinium species was based on the intraspecific sequence variation. 5. Our approach indicates that high‐throughput sequencing of environmental samples is effective for reliable determination of dinophyte species in Bavarian lakes. We further discuss the importance of well‐curated reference databases that remain to be developed in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Ecology Letters, WILEY-BLACKWELL PUBLISHING, ISSN: 1461-023X
    Publication Date: 2017-11-14
    Description: Ecological stability is the central framework to understand an ecosystem’s ability to absorb or recover from environmental change. Recent modelling and conceptual work suggests that stability is a multidimensional construct comprising different response aspects. Using two freshwater mesocosm experiments as case studies, we show how the response to single perturbations can be decomposed in different stability aspects (resistance, resilience, recovery, temporal stability) for both ecosystem functions and community composition. We find that extended community recovery is tightly connected to a nearly complete recovery of the function (biomass production), whereas systems with incomplete recovery of the species composition ranged widely in their biomass compared to controls. Moreover, recovery was most complete when either resistance or resilience was high, the latter associated with low temporal stability around the recovery trend. In summary, no single aspect of stability was sufficient to reflect the overall stability of the system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...