GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deutsches GeoForschungsZentrum GFZ  (27)
  • European Center for Geodynamics and Seismology (ECGS)
  • ROYAL SOC
  • 2020-2022  (8)
  • 2010-2014  (25)
  • 1
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: In my thesis, I studied marine and lacustrine sediment cores from different depositional provinces along the south-central Chilean margin with the overall objective to identify their records of paleoclimate and paleotectonics. First of all, I investigated sedimentary sequences that were recovered within the margin-parallel trench system (cp. Figure 1.2) and hence constitute long-term recorders [...] of the sediment transport between the continent and the abyssal zone of the lower plate.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-07
    Description: In the field of risk evaluation and seismic hazard assessment, it is necessary to codify a great quantity of aspects of the so called knowledge and to supply an intelligent support for the not-well-defined problems (data uncertainty, lack of rigorous solution algorithms). The main feature of an expert system is to emulate effectively the behaviour of a human expert in a particular and defined field, enabling the final user to improve its decisional process and giving access to him to a knowledge base otherwise not clearly codified. From these general considerations the intention came to develop the prototype CZAR (Classificatore Zone A Rischio) that is an expert system reproducing the Italian seismic classification based on the definition of Seismic Hazard given by Progetto Finalizzato Geodinamica (PFG) of the Consiglio Nazionale delle Ricerche (CNR). The expert system built up on the commercial shell Nexpert Object is working on a personal computer through a graphic interface developed with the Graphical User Interface (GUI) of Window 3.0. This user friendly interface makes possible the choice of different procedures to estimate the hazard parameters and also allows the activation of the classification inferential process. The influence of different assumptions and strategies has been evaluated by a mathematical algorithm suggested by the general structure of the Bayes’ theorem. In this paper the prototype of the expert system has been applied to the data relating to Toscana region (central Italy) and the interactive evaluation of the maps furnishes a relative measure for discrepancies on seismic classification in the 2nd seismic category.
    Description: Published
    Description: 153-173
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Techncial Report STR
    Publication Date: 2020-02-12
    Description: This thesis summarizes the results of the WSM project’s second phase (1996‐2008). In particular it presents the major achievements that have been accomplished with the WSM 2008 database release that has been compiled under the guidance of the author. Furthermore, the thesis briefly presents three of the author’s numerical models that aim at quantification the temporal changes of the crustal stress field.
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report
    Publication Date: 2020-02-12
    Description: In order to analyze mineralogical-geochemical changes occurring in whole rock reservoir samples (Stuttgart Formation) from the Ketzin pilot CO2 storage site, Brandenburg/Germany as well as to investigate single fluid-mineral reactions laboratory experiments and geochemical modeling were performed. The whole rock core samples of the Stuttgart Formation were exposed to synthetic brine and pure CO2 at experimental P-T conditions and run durations of 5.5 MPa/40 °C/40 months for sandstone and 7.5 MPa/40 °C/6 months for siltstone, respectively. Mineralogical changes in both sets of experiments are generally minor making it difficult to differentiate the natural variability of the whole rock samples from CO2-induced alterations. Results of sandstone experiments suggest dissolution of analcime, anhydrite, the anorthite component of plagioclase, chlorite + biotite, hematite and K-feldspar. Dissolution of anhydrite, the anorthite component of plagioclase and K-feldspar is also observed in siltstone experiments. During equilibrium simulations best matching models were ranked based on a mathematical statistical dispersion relation. The best matching model comprises a mineral combination of the albite component of plagioclase, anhydrite, dolomite, hematite, and illite. The equilibrium modeling showed that it is difficult to match K+, Fe2+ and SO4 2- brine concentrations simultaneously. The best matching subsets of the equilibrium models were finally run including kinetic rate laws. These kinetic simulations reveal that experimentally determined brine data was well matched, but reactions involving K+ and Fe2+ were not completely covered. Generally larger mismatches for dissolved Al3+ and Si4+ in all the completed simulations are most likely related to the sampling strategy and respective inaccuracies in the measured concentrations of dissolved Al3+ and Si4+. The kinetic simulation suppressing mineral precipitation yields best matches with experimental observations. The modeling shows acceptably well matches with measured brine ion concentrations, and the modeling results identified primary minerals as well as key chemical processes. It was also shown that the modeling approach is not capable of completely covering complex natural systems. Experiments on mineral separates were conducted with 2 M NaCl brine and pure CO2 using siderite, illite and labradorite samples. Experimental P-T conditions were 20 (30) MPa and 80 °C; run durations were one (siderite), two (illite) and three weeks (labradorite), respectively. Based on the acquired set of mineralogical-geochemical data the distinct experiments show: (i) dissolution of ankerite and stable siderite, which is therefore interpreted to be a potential CO2 trapping phase, (ii) preferred dissolution of the Ca-smectite component out of the illite-smectite mixed-layer mineral and (iii) dissolution of labradorite, respectively. No mineral precipitates (e.g. carbonate phases) were detected in any of the conducted laboratory experiments, and only one single kinetic simulation predicts the formation of minute amounts of dolomite. Based on the data acquired during this dissertation the mineralogical-geochemical effects of CO2 are minor, and the (chemical) integrity of the Ketzin reservoir system is not significantly affected by injected CO2.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., subdaily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation of the updated ESA Earth System Model (updated ESM) for gravity mission simulation studies is organized as follows: The characteristics of the updated ESM along with some basic validation is presented in Volume 1. A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2, while Volume 3 contains the description of a strategy to derive realistic errors for the de-aliasing model of high-frequency mass variability in atmosphere and ocean.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ROYAL SOC
    In:  EPIC3Philosophical Transactions of the Royal Society B-Biological Sciences, ROYAL SOC, 375(1814), ISSN: 0962-8436
    Publication Date: 2020-12-04
    Description: Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-07
    Description: The analysis of damage on buildings affected by an earthquake allow to trace back to the defects of the structural system and the imperfections of the constructive elements with reference to the best or worst behaviour in case of seismic action. As a matter of fact the tendency of buildings to be damaged, also defined as seismic vulnerability, is strictly connected with their geometric-constructive characteristics. The damage appears as "effect" of the phenomenon that has its "cause" in the seismic action. Once the characteristics of the system are defined, it is possible to reconstruct the 'cause-effect' relation between seismic action and damage. These relations can be obtained through survey of damage caused by recent earthquake. However this methodology reveals a series of problems. The various quantities applied must be expressed with indices that allow to synthesize complex and articulated scenarios exhaustively; although the damage is a quantity that can be directly assessed by description, it is difficult to measure, as its quantification should be representative for all aspects connected with it (physical, economic, functional, social, etc.). The level of the seismic action must be expressed by a parameter that is an index of the event's destructive capacity and in direct correlation with mechanical quantities (acceleration, velocity, energy, etc.). The vulnerability is an entity able to characterize the more or less accentuated predisposition of the structures to suffer damages independently from the intensity and direction of the seismic action. In this work, subjects concerning seismic action and vulnerability shall not be dealt with, as they have already been investigated in previous works [see Grimaz S., 1992 - Cella F. 1994 and 1995]; in the following the problem of damage quantification shall therefore be explored.
    Description: Published
    Description: 83-103
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...