GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2024-04-22
    Description: The eastern part of Europe is very poorly represented in the Global Network for Isotopes in Precipitation (GNIP) database, mainly because the monitoring of the stable isotopes in precipitation started only recently compared with other regions. In this respect, the main objective of this article is to fill the gap in the GNIP database over the eastern part of Europe and show the temporal variability and potential drivers of an extended network of δ18O values in precipitation collected from 27 locations in Romania and the Republic of Moldova. We also present the first high-resolution map of the spatio-temporal distribution of δ18O values in precipitation in Romania and the Republic of Moldova, according to an observational dataset. According to our results, the stations from western and northern Romania tend to have LMWLS with higher values than those from southwestern Romania. The monthly variation of the δ18O and δ2H showed a clearly interannual variation, with distinct seasonal differences, following the seasonal temperatures. The analysis of the spatial distribution of stable isotopes in precipitation water was made on the basis of both observational data and modeled data. This allowed us to study the origin of the air moisture and the interaction with regional and local patterns and to analyze the link between the spatial δ18O variations and the large-scale circulation patterns on a seasonal scale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-05-07
    Description: The Arctic is experiencing the greatest increase in air temperature on Earth. This significant climatic change is leading to a significant positive trend of increasing wave heights and greater coastal erosion. This in turn effects local economies and ecosystems. Increasing wave energy is one of the main drivers of this alarming trend. However, the data on spatial and temporal patterns of wave heights in the Arctic are either coarse, interpolated or limited to point measurements. The aim of this study is to overcome this shortcoming by using remote sensing data. In this study, the Synthetic Aperture Radar (SAR) satellite TerraSAR-X (TS-X) and TanDEM-X (TD-X) imagery are used to obtain sea state information with a high spatial resolution in Arctic nearshore waters in the Canadian Beaufort Sea. From the entire archive of the TS-X/TD-X StripMap mode with coverage around 30 km × 50 km acquired between 2009 and 2020 around Herschel Island, Qikiqtaruk (HIQ), all the ice-free scenes were processed. The resulting dataset of 175 collocated scenes was used to map the significant wave height ((Formula presented.)) and to link spatial and temporal patterns to local coastal processes. Sea state parameters are estimated in raster format with a 600 m step using the empirical algorithm CWAVE_EX. The statistics of the (Formula presented.) were aggregated according to spatial variability, seasonality and wind conditions. The results show that the spatial wave climate is clearly related to the dominant wind regime and seasonality. For instance, the aggregation of all the scenes recorded in July between 2009 and 2020 results in an average of 0.82 m (Formula presented.), while in October the average (Formula presented.) is almost 0.40 m higher. The analysis by wind direction shows that fetch length and wind speed are likely the most important variables influencing the spatial variability. A larger fetch under NW conditions results in a mean wave height of 0.92 m, while waves generated under ESE conditions are lower at 0.81 m on average.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...