GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (292)
  • 2022  (292)
Document type
Keywords
Language
Years
Year
  • 11
    Publication Date: 2024-02-07
    Description: Highlights • Subaqueous spreading occurs on gently inclined surfaces (〈3°). • Gliding planes could be clays or sandy materials undergoing loss of strength. • It is documented on some of the largest marine landslides. • SubSpread Database includes 32 case studies. • Contourite and glaciogenic deposits represent often the slipping surfaces. Abstract Subaqueous spreading, a type of extensional mass transport that is characterized by a ridge and trough morphology, has been documented globally but is poorly understood. Subaqueous spreading is observed on gently inclined surfaces (typically 〈3°) when sediment bodies experience a sudden reduction of shear strength along their basal plane during clay softening or liquefaction of sands or silty sand sediment. Historically, spreading has been associated with very large landslides, but many unknown aspects of these mass movements have yet to be clarified. Does spreading influences the large catastrophic failure? What are the sedimentological and morphological aspects that contribute in initiating this process? These are some of the research questions that spurred the present work. Here, we introduce a database that incorporates information from thirty-two case studies, and use this to provide key insights into the sedimentary and morphological aspects of subaqueous spreading that will assist in the identification of spreading elsewhere. We find that subaqueous spreading is most common along passive glacial margins, but is also observed along active margins. The occurrence of contourites interlayered with glaciogenic deposits is, in most cases, associated with landslides (or landslide complexes) with spreading morphology. The database shows that seismic loading is commonly suggested to be the dominant trigger mechanism, although more geotechnical observations and modelling analysis would be needed to support this conclusion. We compare subaqueous spreading with terrestrial spreading, in particular to earthquake-related lateral spreading and clay landslides. We find that subaqueous spreading shares the same driving processes and potentially also some of the trigger mechanisms that are associated with the terrestrial spreading cases. Future work will be required to address the association between spreading and its occurrence on some of the largest landslides on Earth, its development mechanism, and its potential hazard implications.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: Marine coastal zones are highly productive, and dominated by engineer species (e.g. macrophytes, molluscs, corals) that modify the chemistry of their surrounding seawater via their metabolism, causing substantial fluctuations in oxygen, dissolved inorganic carbon, pH, and nutrients. The magnitude of these biologically driven chemical fluctuations is regulated by hydrodynamics, can exceed values predicted for the future open ocean, and creates chemical patchiness in subtidal areas at various spatial (µm to meters) and temporal (minutes to months) scales. Although the role of hydrodynamics is well explored for planktonic communities, its influence as a crucial driver of benthic organism and community functioning is poorly addressed, particularly in the context of ocean global change. Hydrodynamics can directly modulate organismal physiological activity or indirectly influence an organism's performance by modifying its habitat. This review addresses recent developments in (i) the influence of hydrodynamics on the biological activity of engineer species, (ii) the description of chemical habitats resulting from the interaction between hydrodynamics and biological activity, (iii) the role of these chemical habitat as refugia against ocean acidification and deoxygenation, and (iv) how species living in such chemical habitats may respond to ocean global change. Recommendations are provided to integrate the effect of hydrodynamics and environmental fluctuations in future research, to better predict the responses of coastal benthic ecosystems to ongoing ocean global change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    World Meteorological Organization (WMO)
    Publication Date: 2023-06-29
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60 degrees N and 55 degrees S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 approximate to 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 〈 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-23
    Description: Highlights • Climate engineering presents a novel challenge for global environmental governance • Institutional and discursive structures co-shape global environmental governance • A lack of joint analyses of both structures impedes understanding of governance emergence • A joint neo-institutionalist and post-structuralist analysis addresses this gap • Varying structures shape differing climate engineering governance decisions in several forums Abstract The Anthropocene is giving rise to novel challenges for global environmental governance. The barriers and opportunities shaping the ways in which some of these complex environmental challenges become governable on the global level are of increasing academic and practical relevance. In this article, we bring neo-institutionalist and post-structuralist perspectives together in an innovative framework to analyse how both institutional and discursive structures together bound and shape the global governance opportunities which become thinkable and practicable in the face of new global environmental challenges. We apply this framework to explore how governance of climate engineering – large scale, deliberate invention into the global climate system – is being shaped by discursive and institutional structures in three international forums: The London Convention and its Protocol, the Convention on Biological Diversity, and the United Nations Environment Assembly. We illustrate that the ‘degree of fit’ between discursive and institutional structures made climate engineering (un)governable in each of these forums. Furthermore, we find that the ‘type of fit’ set the discursive and institutional conditions of possibility for what type of governance emerged in each of these cases. Based on our findings, we critically discuss the implications for the future governance of climate engineering at the global level.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    University of Bremen
    In:  EPIC3University of Bremen, 59 p.
    Publication Date: 2023-06-21
    Description: Climate engineering is an intentional large-scale intervention in the Earth’s climate system to counteract the anthropogenic warming. It has been proposed and recently gained attention as a potential option for tackling global warming. To evaluate the feasibility and impacts of geoengineering, we performed idealized climate simulations using solar geoengineering scheme by artificially reducing the incoming solar radiation at the top of the atmosphere (TOA) either globally or over the polar regions. Four simulations were conducted, i.e. pre-industrial control simulation, global warming simulation with 4xCO2, global uniform solar reduction and reduction of solar radiation regionally over both poles. Our results indicate that the 4xCO2 induced a 6.7 K global mean surface temperature raise, amplified over both poles primarily during the hemisphere winter. Besides, the warming also cause intensification and poleward shift of the global precipitation pattern. A 4.2% globally uniform solar reduction can largely compensate the global mean warming caused by 4xCO2. We find that solar reduction is efficient to reduce the warming at the region where the background sunshine is strong, such as the low-latitude summer warming. However, the CO2 induced warming over high latitudes during winter are less sensitive to solar reduction. The solar reduction leads to more residual warming over land than over the ocean. Therefore, it could result in hemisphere asymmetric residual warming due to the hemisphere asymmetric land-sea distribution. This will eventually cause northward shift of the Intertropical Convergence Zone and the associated low-latitude precipitation pattern. Moreover, we notice that solar reduction could lead to an overall weakening of the global hydrological cycle, suggesting that over reduction of solar radiation may result in large-scale drought. The CO2 forcing introduces more warming over the poles than low-latitudes. The ice sheets around both poles are critical for further sea level rise. Our experiments indicate that 16% solar reduction over both poles (higher than 60 ◦N/S) is able to restore the summer temperature and sea ice extent. However, such polar regional geoengineering leads to stronger and more frequent high-latitude storms. Our simulation results show that Solar Radiation Management is an effective way to offset global mean temperature raise. Nevertheless, climate engineering by reducing insolation at the TOA, either globally or regionally, have strong impact on the hydrological cycle and the regional climate. In spite of the fact that our climate simulations are being highly idealised, these simulations can provide useful information about the climate respond to scenarios with more realistic GHG forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-09-27
    Description: Field studies are essential to reliably quantify ecological responses to global change because they are exposed to realistic climate manipulations. Yet such studies are limited in replicates, resulting in less power and, therefore, potentially unreliable effect estimates. Furthermore, while manipulative field experiments are assumed to be more powerful than non-manipulative observations, it has rarely been scrutinized using extensive data. Here, using 3847 field experiments that were designed to estimate the effect of environmental stressors on ecosystems, we systematically quantified their statistical power and magnitude (Type M) and sign (Type S) errors. Our investigations focused upon the reliability of field experiments to assess the effect of stressors on both ecosystem's response magnitude and variability. When controlling for publication bias, single experiments were underpowered to detect response magnitude (median power: 18%–38% depending on effect sizes). Single experiments also had much lower power to detect response variability (6%–12% depending on effect sizes) than response magnitude. Such underpowered studies could exaggerate estimates of response magnitude by 2–3 times (Type M errors) and variability by 4–10 times. Type S errors were comparatively rare. These observations indicate that low power, coupled with publication bias, inflates the estimates of anthropogenic impacts. Importantly, we found that meta-analyses largely mitigated the issues of low power and exaggerated effect size estimates. Rather surprisingly, manipulative experiments and non-manipulative observations had very similar results in terms of their power, Type M and S errors. Therefore, the previous assumption about the superiority of manipulative experiments in terms of power is overstated. These results call for highly powered field studies to reliably inform theory building and policymaking, via more collaboration and team science, and large-scale ecosystem facilities. Future studies also require transparent reporting and open science practices to approach reproducible and reliable empirical work and evidence synthesis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for 〉40% of the global total emissions (their anthropogenic and natural sources together totaling 〉270 Tg CH4 yr−1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (〉75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by 〉20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-07
    Description: Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including consideration of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. This study presents the first mass-balanced ecosystem model focused on the western Baltic Sea (WBS). Results show that heavy fishing pressure exerted on the WBS has forced top predators such as harbour porpoise and cod to cover their dietary needs by shifting from forage fish to other prey or find food outside of the model area. The model was then developed to explore the dynamics of four future fishery scenarios: (1) business as usual (BAU), (2) maximum sustainable fishing (F = FMSY), (3) half of FMSY, and (4) EBFM with F = 0.5 FMSY for forage fish and F = 0.8 FMSY for other fish. Simulations show that BAU would perpetuate low catches from depleted stocks with a high risk of extinction for harbour porpoise. In contrast, the EBFM scenario would allow the recovery of harbour porpoise, forage fish and cod with increases in catch of herring and cod. EBFM promotes ecosystem resilience to eutrophication and ocean warming, and through the rebuilding of commercial stocks increases by more than three times carbon sequestration compared to BAU. The model provides an interrelated assessment of trophic guilds in the WBS, as required by European law to assess whether European seas are in good environmental status.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-09-27
    Description: 〈jats:p〉Anthropogenic climate change is altering global biogeographical patterns. However, it remains difficult to quantify how bioregions are changing because pre‐industrial records of species distributions are rare. Marine microfossils, such as planktonic foraminifera, are preserved in seafloor sediments and allow the quantification of bioregions in the past. Using a recently compiled data set of pre‐industrial species composition of planktonic foraminifera in 3802 worldwide seafloor sediments, we employed multivariate and statistical model‐based approaches to study spatial turnover in order to 1) quantify planktonic foraminifera bioregions and 2) understand the environmental drivers of species turnover. Four latitudinally banded bioregions emerge from the global assemblage data. The polar and temperate bioregions are bi‐hemispheric, supporting the idea that planktonic foraminifera species are not limited by dispersal. The equatorial bioregion shows complex longitudinal patterns and overlaps in sea surface temperature (SST) range with the tropical bioregion. Compositional‐turnover models (Bayesian bootstrap generalised dissimilarity models) identify SST as the strongest driver of species turnover. The turnover rate is constant across most of the SST gradient, showing no SST threshold values with rapid shifts in species composition, but decelerates above 25°C, suggesting SST is less predictive of species composition in warmer waters. Other environmental predictors affect species turnover non‐linearly, and their importance differs across regions. In the Pacific ocean, net primary productivity below 500 mgC m〈jats:sup〉−2〈/jats:sup〉 day〈jats:sup〉−1〈/jats:sup〉 drives fast compositional change. Water depth values below 3000 m (which affect calcareous microfossil preservation) increasingly drive changes in species composition among death assemblages in the Pacific and Indian oceans. Together, our results suggest that the dynamics of planktonic foraminifera bioregions are expected to be highly responsive to climate change; however, at lower latitudes, environmental drivers other than SST may affect these dynamics.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...