GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Amazon forests are one of the largest ecosystem carbon pools on Earth. Although more frequent and prolonged future droughts have been predicted, the impacts have remained largely uncertain, as most land surface models (LSMs) fail to capture the vegetation drought responses. In this study, the ability of the LSM JSBACH to simulate the drought responses of leaf area index (LAI) and leaf litter production in the Amazon forests is evaluated against artificial drought experiments. Based on the evaluation, improvements are implemented, including a dependency of leaf growth on leaf carbon allocation and a better representation of drought-dependent leaf shedding. The modified JSBACH is shown to capture the drought responses at two sites and across different regions of the basin. It is then coupled with an atmospheric model to simulate the carbon and biogeophysical feedbacks of drought under future climate. We separate the drought impacts into (a) the direct effect, resulting from drier soil and stomatal closure, which does not involve a change in canopy structure, and (b) the LAI effect, resulting from leaf shedding and involving canopy response. We show that the latter accounts for 35% of reduced land carbon uptake (9 ± 10 vs. 26 ± 7 g/m2/yr; mean ± 1 sd) and 12% of surface warming (0.09 ± 0.03 vs. 0.7 ± 0.07 K) during the late 21st century. A north-south dipole of precipitation change is found, which is largely attributable to the direct effect. The results highlight the importance of incorporating drought deciduousness of tropical rainforests in LSMs to better simulate land-atmosphere interactions in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and terrigenous DOM fluorescence proxies as DOM is removed during freezing. High-resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea-ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline (UHC) in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long-range transport of TE to the North Atlantic. Key Points Dissolved Organic Matter (DOM) distribution in the Arctic Ocean is largely controlled by sea ice formation and melt processes DOM distribution in the Arctic Ocean reveals its potential as a tracer for halocline formation and freshwater source assignments Terrigenous and marine DOM are carriers of trace elements from shelves to the open Arctic Ocean, but terrigenous DOM represent stronger ligands
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg-rafted debris (IBRD) sourced from the Pacific- and Atlantic-facing sectors of West Antarctica. Here we report on the sedimentology and provenance of the oldest of three cm-scale coarse-grained layers recovered from this sea at International Ocean Discovery Program Site U1538. These layers are preserved in opal-rich sediments deposited ∼1.2 Ma during a relatively warm regional climate. Our microCT-based analysis of the layer's in-situ fabric confirms its ice-rafted origin. We further infer that it is the product of an intense but short-lived episode of IBRD deposition. Based on the petrography of its sand fraction and the Phanerozoic 40Ar/39Ar ages of hornblende and mica it contains, we conclude that the IBRD it contains was likely sourced from the Weddell Sea and/or Amundsen Sea embayment(s) of West Antarctica. We attribute the high concentrations of IBRD in these layers to “dirty” icebergs calved from the WAIS following its retreat inland from its modern grounding line. These layers also sit at the top of a ∼366-m thick Pliocene and early Pleistocene sequence that is much more dropstone-rich than its overlying sediments. We speculate this fact may reflect that WAIS mass-balance was highly dynamic during the ∼41-kyr (inter)glacial world. Key Points - We present the first provenance data generated for Pleistocene-aged iceberg-rafted debris deposited in Iceberg Alley - We conclude that prominent iceberg-rafted debris layers deposited at Pirie Basin Site U1538 ∼1.2 Ma were sourced from West Antarctica - They represent intense suborbitally-paced episodes of iceberg discharge from tidewater glaciers, most likely in the Weddell Embayment
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO2) abundance by about 50% since the beginning of the industrial age. The atmospheric CO2 growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO2. As these CO2 emissions grew, uptake by the ocean increased in response to increases in atmospheric CO2 partial pressure (pCO(2)). On land, gross primary production also increased, but the dynamics of other key aspects of the land carbon cycle varied regionally. Over the past three decades, CO2 uptake by intact tropical humid forests declined, but these changes are offset by increased uptake across mid- and high-latitudes. While there have been substantial improvements in our ability to study the carbon cycle, measurement and modeling gaps still limit our understanding of the processes driving its evolution. Continued ship-based observations combined with expanded deployments of autonomous platforms are needed to quantify ocean-atmosphere fluxes and interior ocean carbon storage on policy-relevant spatial and temporal scales. There is also an urgent need for more comprehensive measurements of stocks, fluxes and atmospheric CO2 in humid tropical forests and across the Arctic and boreal regions, which are experiencing rapid change. Here, we review our understanding of the atmosphere, ocean, and land carbon cycles and their interactions, identify emerging measurement and modeling capabilities and gaps and the need for a sustainable, operational framework to ensure a scientific basis for carbon management.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Germany 2050: For the first time Germany reached a balance between its sources of anthropogenic CO2 to the atmosphere and newly created anthropogenic sinks. This backcasting study presents a fictional future in which this goal was achieved by avoiding (∼645 Mt CO2), reducing (∼50 Mt CO2) and removing (∼60 Mt CO2) carbon emissions. This meant substantial transformation of the energy system, increasing energy efficiency, sector coupling, and electrification, energy storage solutions including synthetic energy carriers, sector-specific solutions for industry, transport, and agriculture, as well as natural-sink enhancement and technological carbon dioxide options. All of the above was necessary to achieve a net-zero CO2 system for Germany by 2050.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: In the scope of assessing aquifer systems in areas where freshwater is scarce, estimation of transit times is a vital step to quantify the effect of groundwater abstraction. Transit time distributions of different shapes, mean residence times, and contributions are used to represent the hydrogeological conditions in aquifer systems and are typically inferred from measured tracer concentrations by inverse modeling. In this study, a multi-tracer sampling campaign was conducted in the Salalah Plain in Southern Oman including CFCs, SF6, 39Ar, 14C, and 4He. Based on the data of three tracers, a two-component Dispersion Model (DMmix) and a nonparametric model with six age bins were assumed and evaluated using Bayesian statistics. In a Markov Chain Monte Carlo approach, the maximum likelihood parameter estimates and their uncertainties were determined. Model performance was assessed using Bayes factor and leave-one-out cross-validation. Both models suggest that the groundwater in the Salalah Plain is composed of a very young component below 30 yr and a very old component beyond 1,000 yr, with the nonparametric model performing slightly better than the DMmix model. All wells except one exhibit reasonable goodness of fit. Our results support the relevance of Bayesian modeling in hydrology and the potential of nonparametric models for an adequate representation of aquifer dynamics. Key Points: - Groundwater in a semi-arid area was dated with multiple tracers including the first full-scale application of 39Ar with Argon Trap Trace Analysis - Bayesian inference was applied for modeling the transit time distributions using a Markov-Chain Monte Carlo simulation - A Dispersion Model with two components and a nonparametric model with six age bins were applied, both suggesting a mixed groundwater of very old and very young origin
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. But, what controls the distribution of barium (Ba) in the oceans? Here, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin Bay-derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the ocean but this has yet to be constrained around Greenland. Here, we show subglacial discharge from the cavity underneath Nioghalvfjerdsbræ floating ice tongue, is a previously unrecognized source of dPb to the NE Greenland Shelf. Contrasting cavity-inflowing and cavity-outflowing waters, we constrain the associated net-dPb flux as 2.2 ± 1.4 Mg·yr−1, of which ∼90% originates from dissolution of glacial bedrock and cavity sediments. We propose that the retreat of the floating ice tongue, the ongoing retreat of many glaciers on Greenland, associated shifts in sediment dynamics, and enhanced meltwater discharges into shelf waters may result in pronounced changes, possibly increases, in net-dPb fluxes to coastal waters. Key Points - Helium and neon show strong evidence for a subglacial source of Pb discharging onto the NE Greenland Shelf - Contrasting inflowing and outflowing waters beneath the floating ice tongue of Nioghalvfjerdsbræ shows a 2-3-fold dPb enrichment - The dissolved Pb flux from Nioghalvfjerdsbræ (2.2 ± 1.4 Mg·yr−1) is comparable to small Arctic rivers, with ∼90% of a sedimentary origin
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...