GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-21
    Description: Marine zooplankton are central components of holistic ecosystem assessments due to their intermediary role in the food chain, linking the base of the food chain with higher trophic levels. As a result, these organisms incorporate the inherent properties and changes occurring atall levels of the marine ecosystem, temporally integrating signatures of physical and chemical conditions. For this reason, zooplankton-based biometrics are widely accepted as useful tools for assessing and monitoring the ecological health and integrity of aquatic systems. The European Marine Strategy Framework Directive (EU-MSFD) requires the use of different types of bio-monitors, including zooplankton, to monitor progress towards achieving specific environmental and water quality targets in EU. However, there is currently no comprehensive synthesis of zooplankton indices development, use, and associated challenges. We addressed this issue with a two-step approach. First, we formulated the indicator-metrics-indices cycle (IMIC) to redefine the closely related but often ambiguously utilized terms - indicator, metric and index, highlighting the convergence between them and the iterative nature of their interaction. Secondly, we formulated frameworks for synthesizing, presenting and systematically applying zooplankton indices based on the IMIC framework. The main benefits of the IMIC are twofold: 1). to disambiguate the key elements: indicators, metrics, and indices, revealing their links to an operational ecological indicator system, and 2) to serve as an organizing tool for the coherent classification of indices according to the MSFD descriptors. Using the IMIC framework, we identified and described two broad categories of indices namely the core biodiversity indices already in use in the Baltic Sea and North Atlantic regions, including the ‘Zooplankton Mean Size and Total Stock (zooplankton MSTS)’ and 'Plankton Lifeforms index (PLI)', and stressor-response indices retrieved from the existing literature, elucidating their applicability to different MSFD descriptors. Finally, major challenges of developing new indices and applying existing ones in the context of the MSFD were critically addressed and some solutions were proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier BV
    In:  EPIC3Marine Pollution Bulletin, Elsevier BV, 185(Pt B), pp. 114340-114340, ISSN: 0025-326X
    Publication Date: 2023-01-17
    Description: The study aims to unravel the variability of Dinophysis spp. and their alleged toxins in conjunction with environmental drivers in Ambon Bay. Phytoplankton samples, lipophilic toxins and physiochemical water properties were analysed during a 1.5-year period. Three Dinophysis species (D. miles, D. caudata, and D. acuminata) were found in plankton samples, of which D. miles was the most abundant and persistently occurring species. Pectenotoxin-2 (PTX2) and its secoacid (PTX2sa) were detected throughout, and PTX2sa levels strongly correlated with D. miles cell abundance. The toxin showed a positive correlation with temperature, which may suggest that D. miles cells contain rather constant PTX2sa during warmer months. Dissolved nitrate concentrations were found to play a major role in regulating cell abundances and toxin levels. This study adds adequate information regarding marine biotoxins and potentially toxic species for future Harmful Algal Bloom management in Ambon and Indonesia at large.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-17
    Description: The response of marine ecosystems to rapid climate changes has been well recognized but not studied extensively. Benthic microalgae, in contrast to the phytoplankton that is able to be transported by currents, have limited dispersal ability and thus are a better ecological indicator to climate changes. Here we performed sampling in the Yellow Sea, the East China Sea and South China Sea and established twenty-six strains of benthic Prorocentrum for detailed morphological and molecular examinations. Five Prorocentrum species, including P. concavum, P. fukuyoi, P. mexicanum, P. tsawwassenense, and P. cf. sculptile, were identified. Both P. concavum and P. fukuyoi displayed marked intraspecific divergences in large subunit (LSU) ribosomal RNA gene sequences, corresponding to their geographical origins. In contrast, P. mexicanum strains shared identical LSU sequence. Prorocentrum tsawwassenense and P. cf. sculptile are not suitable ecological indicators as they were rarely observed. Prorocentrum mexicanum is not recommended either as it is present across the region. In contrast, P. concavum and P. fukuyoi have advantages as ecological indicators for climate changes in the Western Pacific as they comprise several ribotypes with differentiated biogeography. Toxin analysis was also performed on all five species except P. fukuyoi by liquid chromatography coupled to tandem mass spectrometry, but okadaic acid was not detectable.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-18
    Description: Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Canals provide wide-ranging economic benefits, while also serving as corridors for the introduction and spread of aquatic alien species, potentially leading to negative ecological and economic impacts. However, to date, no comprehensive quantifications of the reported economic costs of these species have been done. Here, we used the InvaCost database on the monetary impact of invasive alien species to identify the costs of those facilitated by three major canal systems: the European Inland Canals, Suez Canal, and Panama Canal. While we identified a staggering number of species having spread via these systems, monetary costs have been reported only for a few. A total of $33.6 million in costs have been reported from species linked to European Inland Canals (the fishhook waterflea Cercopagis pengoi and the zebra mussel Dreissena polymorpha) and $8.6 million linked to the Suez Canal (the silver-cheeked toadfish Lagocephalus sceleratus, the lionfish Pterois miles, and the nomad jellyfish Rhopilema nomadica), but no recorded costs were found for species facilitated by the Panama Canal. We thus identified a pervasive lack of information on the monetary costs of invasions facilitated by canals and highlighted the uneven distribution of costs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...