GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-18
    Description: The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions. A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels? In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-15
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in the Middle East and North Africa (MENA) countries has been developed and applied to the country case of Tunisia. It is designed to support the strategy development and governance of the energy transition and to serve as a guide for decision makers. The analysis shows that Tunisia has already taken important steps towards a RE transition. According to the MENA phase model, Tunisia can be classified as being in the "Take-Off Renewables" phase. Nevertheless, natural gas still plays the dominant role in Tunisia's highly subsidised electricity generation. In addition to the elevated political uncertainty, there are numerous structural, political, social, and economic challenges within the energy sector that hinder progress in the transition to REs. Strong support at all levels is needed to promote the breakthrough of RE. This includes more detailed long-term planning and improving the regulatory framework, as well as reducing offtaker risks to improve the bankability of RE projects in order to attract private investment. Furthermore, institutional buy-in needs to be increased and the engagement of key non-state stakeholders must be strengthened. In light of the growing domestic energy demand and with the on-going global decarbonisation efforts in favour of sustainable fuels, Tunisia would be well advised to embark on a sustainable energy path sooner rather than later to seize economic opportunities that can arise from RE development.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy transition in MENA countries has been developed and applied to the country case of Algeria. It is designed to support the strategy development and governance of the energy transition and to serve as a guide for decision makers. The analysis shows that Algeria has already taken first steps towards a renewable energy transition. According to the MENA phase model, Algeria can be classified as entering the "Take-Off Renewables" phase. Nevertheless, fossil fuels still play a dominant role in the Algerian energy sector and in the economy as a whole. To support the renewables take-off, strong support is therefore needed at all levels. Only then can the necessary framework conditions be created to encourage participation and to attract investment from the private sector. To this end, a long-term energy strategy should to be developed that takes into account the renewable energy potential to support an efficient transformation of the Algerian energy supply and enables a smooth transition.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Bochum : Ruhr-Universität Bochum
    Publication Date: 2022-02-23
    Description: The energy sector today accounts for about 10% to 15% of global freshwater withdrawal. Most water in the energy sector is used for generating electricity, especially for cooling processes in thermal power plants. At the same time the demand for electricity is expected to increase significantly due to population growth and economic development in emerging and developing economies. Growing demand is also driven by electrification strategies pursued by industrialized countries to decarbonize their economies. With the global demand for electricity expected to increase significantly in the coming decades also the water demand in the power sector is expected to rise. However, due to the on-going global energy transition, the future structure of the power supply - and hence future water demand for power generation - is subject to high levels of uncertainty because the volume of water required for electricity generation varies significantly depending on both the generation technology and cooling system. In light of these challenges the objective of this analysis is to provide more systematic and robust answers in terms of the impacts of different decarbonization strategies in the electricity sector on water demand at global and regional level. The focus is on operational water use for electricity generation.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-09
    Description: By use of macro-economic model EXIOMOD, the expected impacts of actions described in the Strategic Research and Innovation Agenda (SRIA) have been analyzed. The results of this analysis show that the R&I actions described in the SRIA contribute to decoupling economic growth from resource use. The actions are expected to cause an increasing gross domestic product and a decreasing raw material demand. This results in an increasing extracted resource productivity, a measure used to show the decoupling of economic growth and resource use. It can however be questioned whether the actions in the SRIA - or the measures implemented in the model - assume a strong enough pace for decoupling economic growth and material use. The actions contribute to the climate goals of the European Commission, by showing a pathway through which the emissions of greenhouse gas can be reduced.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-10
    Description: Mit der Blockchain - und allgemein mit Distributed-Ledger-Technologien (DLT) - werden große Erwartungen verknüpft, die Prozesse der digitalen Welt des 21. Jahrhunderts neu zu organisieren, effizienter zu gestalten und bislang ungekannte Möglichkeiten für Transaktionen zwischen Beteiligten in Wirtschaft, Gesellschaft und Verwaltung zu ermöglichen. Diese Chancen müssen genutzt werden. Gleichzeitig ist mit der Blockchain-Technologie wie mit allen anderen digitalen Lösungen die Herausforderung verbunden, die Technologien, Anwendungen und zugrundeliegenden Infrastrukturen nachhaltig zu gestalten und an Energieeffizienz, Klimaschutz und Ressourcenschonung auszurichten. Handlungsbedarf besteht auch bei Blockchain-Anwendungen. Der Energieverbrauch des derzeit größten Blockchain-Netzwerks Bitcoin wird auf bis über 130 TWh/Jahr abgeschätzt, womit eine Größenordnung in Höhe des gesamten Jahresstrombedarfs von Ländern wie Argentinien erreicht würde. Blockchain-Anwendungen sind somit schon heute umweltpolitisch relevante Einflussgrößen und die zu erwartende Wachstumsdynamik erhöht den Handlungsdruck. Es ist das Ziel dieser Kurzstudie, geeignete Nachhaltigkeitskriterien zur Bewertung der Energieverbräuche und Umweltwirkungen von Blockchain-Anwendungen zu identifizieren sowie ein erstes Konzept für deren Implementierung bei der Umsetzung und Vergabe staatlich geförderter oder initiierter Projekte vorzuschlagen.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...