GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-28
    Description: Reconstructions of global hydroclimate during the Common Era (CE; the past ∼2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic compositions of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 759 isotope records from the terrestrial and marine realms, including glacier and ground ice (210); speleothems (68); corals, sclerosponges, and mollusks (143); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and nonexperts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate-model-simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model–data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593 (last access: 30 July 2020).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-10
    Description: This paper aims to develop the first differentiated (earlywood—EW, latewood—LW, and total ring width—RW) dendrochronological series for ash (Fraxinus excelsior L.) and oak (Quercus robur L.) trees from the Republic of Moldova, and to analyze their climatic response and their spatio-temporal stability. For this, 18 ash and 26 oak trees were cored from the DobruÈ�a protected area, Republic of Moldova, Eastern Europe, and new EW, LW, and RW chronologies were developed for ash and oak covering the last century. The obtained results showed that the RW and LW have a similar climatic response for both species, while EW is capturing interannual climate variations and has a different reaction. The analyses performed with monthly climatic data revealed a significant and negative correlation with the mean air temperature and a significant and positive correlation with precipitation and the Standardized Precipitation-Evapotranspiration Index (SPEI) for both ash and oak. The temperature during the vegetation period has a strong influence on all tree-ring components of ash, while for oak the strong correlation was found only for LW. The positive and significant correlation between LW and RW with precipitation for both species, suggests that ash and oak are sensitive to the hydrological component and the precipitation is the main tree growth-limiting factor. Despite the significant correlation with precipitation and temperature for the whole analyzed period, the 25-year moving correlation analyses show that they are not stable in time and can switch from positive to negative or vice versa, while the correlation with SPEI3 drought index, which is a integration of both climatic parameters, is stable in time. By employing the stability map analysis, we show that oak and ash tree ring components, from the eastern part of the Republic of Moldova, have a stable and significant correlation with SPEI3 and scPDSI drought indices from February (January) until September, over the eastern part of Europe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3The Cryosphere, Copernicus, 14(11), pp. 3843-3873, ISSN: 1994-0424
    Publication Date: 2020-11-11
    Description: Antarctic geothermal heat flow (GHF) affects the temperature of the ice sheet, determining its ability to slide and internally deform, as well as the behaviour of the continental crust. However, GHF remains poorly constrained, with few and sparse local, borehole-derived estimates and large discrepancies in the magnitude and distribution of existing continent-scale estimates from geophysical models. We review the methods to estimate GHF, discussing the strengths and limitations of each approach; compile borehole and probe-derived estimates from measured temperature profiles; and recommend the following future directions. (1) Obtain more borehole-derived estimates from the subglacial bedrock and englacial temperature profiles. (2) Estimate GHF from inverse glaciological modelling, constrained by evidence for basal melting and englacial temperatures (e.g. using microwave emissivity). (3) Revise geophysically derived GHF estimates using a combination of Curie depth, seismic, and thermal isostasy models. (4) Integrate in these geophysical approaches a more accurate model of the structure and distribution of heat production elements within the crust and considering heterogeneities in the underlying mantle. (5) Continue international interdisciplinary communication and data access.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...