GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Leibniz-Institut für Ostseeforschung Warnemünde (IOW)
    In:  Leibniz-Institut für Ostseeforschung Warnemünde : Jahresbericht - Annual Report, 2014 . pp. 33-36.
    Publication Date: 2015-06-30
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-22
    Description: Ocean warming and species exploitation have already caused large‐scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time‐dynamic integrated food web modeling approach (Ecosim) with previous data from community‐level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well‐managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near‐future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human‐driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade‐off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate‐driven biodiversity change and its effects on ecosystem processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-11
    Description: This cruise was conducted as part of the educational training of fishers in the framework of the transdisciplinary SeaRanger program which is scientifically accompanied by the Institute of marine ecosystem and fisheries Science (IMF) at the University of Hamburg (UHAM), the Christian-Albrechts University Kiel, Centre for Ocean and Society (CeOS), the Thuenen-Institute for Baltic Sea fisheries (TI-OF), and the German Centre for Integrative Biodiversity Research (iDiv) in the framework of the joint project SpaCeParti (Coastal Fishery, Biodiversity, Spatial Use and Climate Change: A Participative Approach to navigate the Western Baltic Sea into a Sustainable Future; Grant no. 03F0914) funded by the BMBF. In order to give the fishermen as realistic an application of the standard monitoring techniques as possible, the trip was planned in such a way that the training part was integrated into a scientific monitoring programme focussing on the spawning activity of fish in the Belt Sea. By sampling a standardised station grid contributing to the joint long-term sampling efforts in the Western Baltic Sea which are internationally coordinated by the WBCF (Western Baltic cod Forum), the fishers learned how plankton, fish and water samples are taken, preserved, and analysed and gained a comprehensive insight into the hydrography and fauna of the western Baltic. Similar to the previous cruise AL606 in January 2024 conducted by the IMF no cod larvae and generally less larvae compared to previous years were observed in the Bongo 500 μm net samples from the Plankton grid stations, potentially indicating a delayed spawning activity of fish in the Belt Sea potentially related to the comparably low water temperatures in winter 2023/24.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: The objective of this perspective article is to determine the extent to which processes operating across the air–sea interface are considered in international environmental policy. The ocean is usually important but rarely a defining feature in such policies. We will begin with a brief introduction to the existing relevant treaties and policy frameworks. The provisions within these treaties will be analyzed for instances when air–sea interactions are considered and when they are not. We aim to establish that there is a lack of consideration in international regulation of the interaction between the atmosphere and the ocean, something that is not compatible with the environmental reality. Consequently, we point out examples where we think the air–sea interface could have been incorporated in international legislation. The question of why there is a gap between science and policy, regarding air–sea interactions, is posed and our hypotheses for the answers are outlined. The concept of so-called soft law and related instruments, such as the 2015 United Nations Sustainable Development Goals, are discussed. We finalize this review with our recommendations for future policymaking across the air–sea interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-08
    Description: Riverine nutrient export is an important process in marine coastal biogeochemistry and also impacts global marine biology. The nitrogen cycle is a key player here. Internal feedbacks regulate not only nitrogen distribution, but also primary production and thereby oxygen concentrations. Phosphorus is another essential nutrient and interacts with the nitrogen cycle via different feedback mechanisms. After a previous study of the marine nitrogen cycle response to riverine nitrogen supply, we here additionally include phosphorus from river export with different phosphorus burial scenarios and study the impact of phosphorus alone and in combination with nitrogen in a global 3-D ocean biogeochemistry model. Again, we analyse the effects on near coastal and open ocean biogeochemistry. We find that the addition of bio-available riverine phosphorus alone or together with nitrogen affects marine biology on millennial timescales more than riverine nitrogen alone. Biogeochemical feedbacks in the marine nitrogen cycle are strongly influenced by the additional phosphorus. Where bio-available phosphorus is increased by river input, nitrogen concentrations increase as well, except for regions with high denitrification rates. High phosphorus burial rates decrease biological production significantly. Globally, riverine phosphorus leads to elevated primary production rates in the coastal and open oceans.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-14
    Description: This article presents risk factors that are associated with the handling of unexploded ordnance (UXO) during explosive ordnance disposal (EOD) operations in German waters. The construction of offshore wind parks and the German immediate action program are expected to increase the number of EOD operations. Existing literature and guidelines do not offer a structured and reproducible framework for assessing EOD risk. To fill this gap, a network of EOD risk factors was developed by means of a literature review and validation via expert consultation. The study was scoped to “personnel and equipment at the EOD location” as the risk receptor and “undesired detonation” as the undesired event under investigation. Factors are subdivided into UXO factors that depend on the object that should be handled and factors that describe the object's surrounding environment. While the former can be researched by an EOD expert, the latter must be measured on site or acquired from a model. Each of these factors contributes to risk, some directly and others indirectly via other factors. The complexity of the resulting network, with its 33 factors, demonstrates the need for a reliable and reproducible model to quantify EOD risk. Its purpose is not to replace EOD experts but to aid them in their decision‐making process. Such a tool can provide valuable support for the high‐cost and high‐risk EOD operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-16
    Description: The round goby, Neogobius melanostomus (Pallas, 1814), is one of the most invasive non-indigenous species in the Baltic Sea. It dominates coastal fisheries in some localities and is frequently found in offshore pelagic catches. This paper identifies management issues and suggests actions to be considered for post-invasion management. Priority should be given to the establishment of a coordinated pan-Baltic monitoring programme and associated data storage and exchange, as well as the compilation of landing statistics of the round goby in commercial and recreational fisheries. While eradication is unrealistic, population control that leads to minimising the risk of transfer to yet uncolonised areas in the Baltic Sea and adjacent waterbodies is feasible. This should comprise the requirement that the species be landed in commercial fishery bycatch, the management of ships’ ballast water and sediments, and hull fouling of inland and sea-going vessels, including recreational boats. Extensive involvement of stakeholders is crucial at all phases of the management process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-18
    Description: Spatial predictions of total organic carbon (TOC) concentrations and stocks are crucial for understanding marine sediments’ role as a significant carbon sink in the global carbon cycle. In this study, we present a geospatial prediction of TOC concentrations and stocks at a 5 x 5 arc minute grid scale, using a deep learning model — a novel machine learning approach based on a new compilation of over 22,000 global TOC measurements and a new set of predictors, such as seafloor lithologies, grain size distribution, and an alpha-chlorophyll satellite data. In our study, we compared the predictions and discuss the limitations from various machine learning methods. Our findings reveal that the neural network approach outperforms methods such as k Nearest Neighbors and random forests, which tend to overfit to the training data, especially in highly heterogeneous and complex geological settings. We provide estimates of mean TOC concentrations and total carbon stock in both continental shelves and deep sea settings across various marine regions and oceans. Our model suggests that the upper 10 cm of oceanic sediments harbors approximately 171 Pg of TOC stock and has a mean TOC concentration of 0.68 %. Furthermore, we introduce a standardized methodology for quantifying predictive uncertainty using Monte Carlo dropout and present a map of information gain, that measures the expected increase in model knowledge achieved through in-situ sampling at specific locations which is pivotal for sampling strategy planning.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-22
    Description: Highlights • More diverse non-native taxa generally include more economically costly species. • Chordates, nematodes and pathogens are among significantly over-represented taxa. • Monetary cost magnitude links positively to numbers of costly invasive species. • Costs are biased towards a few ‘hyper-costly’ invasive species groups. • Future invasion rates will continue to harbour new economically costly species. Abstract A dominant syndrome of the Anthropocene is the rapid worldwide spread of invasive species with devastating environmental and socio-economic impacts. However, the dynamics underlying the impacts of biological invasions remain contested. A hypothesis posits that the richness of impactful invasive species increases proportionally with the richness of non-native species more generally. A competing hypothesis suggests that certain species features disproportionately enhance the chances of non-native species becoming impactful, causing invasive species to arise disproportionately relative to the numbers of non-native species. We test whether invasive species with reported monetary costs reflect global numbers of established non-native species among phyla, classes, and families. Our results reveal that numbers of invasive species with economic costs largely reflect non-native species richness among taxa (i.e., in 96 % of families). However, a few costly taxa were over- and under-represented, and their composition differed among environments and regions. Chordates, nematodes, and pathogenic groups tended to be the most over-represented phyla with reported monetary costs, with mammals, insects, fungi, roundworms, and medically-important microorganisms being over-represented classes. Numbers of costly invasive species increased significantly with non-native richness per taxon, while monetary cost magnitudes at the family level were also significantly related to costly invasive species richness. Costs were biased towards a few ‘hyper-costly’ taxa (such as termites, mosquitoes, cats, weevils, rodents, ants, and asters). Ordination analysis revealed significant dissimilarity between non-native and costly invasive taxon assemblages. These results highlight taxonomic groups which harbour disproportionately high numbers of costly invasive species and monetary cost magnitudes. Collectively, our findings support prevention of arrival and containment of spread of non-native species as a whole through effective strategies for mitigation of the rapidly amplifying impacts of invasive species. Yet, the hyper- costly taxa identified here should receive greater focus from managers to reduce impacts of current invasive species.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...