GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (197)
  • Data
  • Open Access-Papers  (197)
  • 2020-2023  (197)
Document type
  • Journals
  • Articles  (197)
  • Data
Source
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Svalbard Integrated Arctic Earth Observing System (SIOS)
    In:  EPIC3Longyearbyen, Norway, Svalbard Integrated Arctic Earth Observing System (SIOS), 96 p., ISBN: 978-82-93871-03-3
    Publication Date: 2022-07-04
    Description: Executive Summary The State of Environmental Science in Svalbard (SESS) report 2021 together with its predecessors contributes to the documentation of the state of the Arctic environment in and around Svalbard, and highlights research conducted within the Svalbard Integrated Arctic Earth Observing System (SIOS). Climate change is a global problem, but many of its impacts are being felt most strongly in the Arctic. Given its remote but accessible location, Svalbard constitutes an ideal place to study the Arctic environment in general, including, more specifically, the causes and consequences of climate change. The Arctic Climate Change Update (2021) emphasised the severity of global climate change for ecosystems across the Arctic. They are undergoing radical changes regarding their structure and functioning, affecting flora, fauna and livelihoods of Arctic communities. Oceanic ecosystems and food webs are directly and indirectly altered by the warming and freshening of the Arctic Ocean. A prolonged open water period and the expansion of open water areas caused by declining sea ice affect under-ice productivity and diversity. These changes have cascading effects through ecosystems and impact the distribution, abundance and seasonality of a variety of marine species. Svalbard is located at one of the key oceanic gateways to the Arctic. This land–ice–ocean transition zone is a system particularly vulnerable to environmental changes. Svalbard’s environment is influenced by maritime processes; thus extensive observation of the ocean system is nowadays necessary. The chapter on the iMOP project reports seawater temperature and salinity variability over the last decades and indicates changes of Svalbard fjord seawater properties. The chapter highlights the role of a collaborative and supportive network of observatory operators and encourages joint planning and maintenance of future marine observatories. Arctic vegetation plays a key role in land–atmosphere interactions. Alterations can lead to ecosystem–climate feedbacks and exacerbate climate change. Extreme precipitation events are already becoming more frequent. Together with an increasing rain-to-snow ratio they impact the structure and functioning of terrestrial ecosystems. Dynamics in Arctic tundra ecosystems are expected to undergo fundamental changes with increasing temperatures as predicted by climate models. To detect, document, understand and predict those changes, COAT Svalbard provides a long-term and real-time operational observation system through ecosystem-based terrestrial monitoring. The observation system consists of six modules comprising food web pathways as well as one climate-monitoring module and focuses on two contrasting regions in Svalbard to allow for intercomparison. To date, the project has done an initial assessment of tundra ecosystems in Norway and will now begin with the long-term ecosystembased monitoring. For remote regions such as the Svalbard archipelago, terrestrial photography is a crucial addition to satellite imagery, because land-based cameras offer high temporal resolution and insensitivity towards varying weather conditions. PASSES provides an overview of cameras operating in Svalbard managed by research institutions and private companies. The survey revealed difficulties and knowledge gaps preventing the full potential of the terrestrial photography network in Svalbard from being used. Therefore, PASSES recommends the creation of a Svalbard camera system network. The effects of climate change contributed to a specific anomaly of the springtime Arctic atmosphere, namely a pronounced depletion of stratospheric ozone during March and April 2020, which can be called an Arctic ozone hole. In Svalbard, the amount of ozone loss was recorded by ground-based dedicated spectroscopic instruments measuring the total ozone column as well as the UV irradiance (EXAODEP-2020, an update of UV Ozone). The latter is important for effects on the biota. Corresponding erythemal daily doses for spring 2020 show a doubling compared to previous years with less or no ozone depletion. While the correspondence between ozone loss and increase in UV doses follows a well-known relationship, the possible later consequences of the observed springtime increase of UV doses on Svalbard’s environment need to be further studied. A particular method to observe the Svalbard environment, which has seen a very strong increase in usage during recent years, is the application of unmanned airborne or marine vehicles. The update on recent publications using these devices (UAV Svalbard) reveals that especially conventional remotely operated aerial vehicles (drones) with camera equipment are now widely used. It is recommended to SIOS to foster interdisciplinary communication among the multitude of drone users to establish exchange of information and data. New EU regulations for drone operations are being put in place from 2022 onwards also in Svalbard. Climate services are receiving more and more attention from Arctic countries, because they translate data into relevant and timely information, thereby supporting governments, societies and industries in planning and decision-making processes. SIOS contributes to climate services by providing research infrastructure with an overarching goal to develop and maintain a regional observational system for long-term measurements in and around Svalbard. The SIOS Core Data (SCD) consists of a list of essential Earth System Science variables relevant to determine environmental change in the Arctic. SCD is developed to improve the relevance and availability of scientific information addressing ESS topics for decision-making. SIOS Core Data providers have committed to maintain the observations for at least five years, to make the data publicly available, and to follow advanced principles of scientific data management and stewardship. Arctic climate change is posing risks to the safety, health and well-being of Arctic communities and ecosystems. Still, there remain gaps in our understanding of physical processes and societal implications. The authors of the SESS chapters have highlighted some unanswered questions and suggested concrete actions that should be taken to address them. The editors would like to thank the authors for their valuable contributions to the SESS Report 2021. These chapters illustrate how SIOS projects contribute to ensure the future vitality and resilience of Arctic peoples, communities and ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-23
    Description: This open access book presents the results of three years collaboration between earth scientists and data scientists, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Description: This assessment report identifies six key areas of sustainable consumption. Transforming those areas is associated with a significant, positive impact on sustainable development. In this way, those key areas lay the foundation to set clear priorities and formulate concrete policy measures and recommendations. The report describes recent developments and relevant actors in those six fields, outlines drivers and barriers to reach a shift towards more sustainability in those specific areas, and explores international good-practice examples. On top of this, overarching topics in the scientific discourse concerning sustainable consumption (e.g. collaborative economy, behavioural economics and nudging) are revealed by using innovative text-mining techniques. Subsequently, the report outlines the contributions of these research approaches to transforming the key areas of sustainable consumption. Finally, the report derives policy recommendations to improve the German Sustainable Development Strategy (DNS) in order to achieve a stronger stimulus effect for sustainable consumption.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-09
    Description: The spatial and temporal heterogeneity of ecosystems plays an important role in species distribution and ecosystem dynamics (Kovalenko et al., 2012). The physical and biochemical properties of the waters of the Mackenzie Shelf in the Beaufort Sea are strongly influenced by the eponymous river and its discharge plume, occasionally causing strong salinity, temperature, and turbidity gradients (Brenkman et al., 2007; Swanson & Kidd, 2009; Jensen et al., 2014), thus affecting the distribution of economically and culturally important organisms, among others. Clarifying how the physical characteristics of marine habitats influence the relative abundance and demographic characteristics of anadromous fishes has an important bearing on management and conservation objectives. The objective of this study was to examine how the timing and catch of Dolly Varden in the nearshore summer subsistence fishery are affected by environmental conditions in the Beaufort Sea. In addition, we examined whether there is a relationship between environmental parameters and the demographic and somatic characteristics of the Dolly Varden caught. The study analysed fisheries-dependent data from two different study sites (Herschel Island and Shingle Point, Yukon Territory, Canada) from 2013 to 2019. Remotely sensed environmental parameters of temperature, chlorophyll-a, turbidity, and sea ice were derived from Landsat-8 and Sentinel-2 imagery and examined along with wind vectors. To provide information on how Dolly Varden abundances respond to stochastic environmental events in marine waters. Measured environmental parameters show that aggregation of Dolly Varden on Herschel Island is spatially correlated with increased chlorophyll-a as well as SST. Stochastic turbidity events showed a negative influence, causing specimens to seek spatial refuge in better water conditions. Results showed similar correlations for SPT, although the parameters here are much more difficult to differentiate due to the high suspended sediment concentration (CDOM). Data obtained from this study indicate that the geographic distribution of Dolly Varden in the Beaufort Sea is dependent on condition and osmoregulation (age/length). In marine waters, adult individuals are clearly influenced by stochastic environmental events (temperature and turbidity), opportunistically seeking out production hotspots for feeding (sea ice and chlorophyll-a).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-06
    Description: Abstract Marine coastal zones are highly productive, and dominated by engineer species (e.g. macrophytes, molluscs, corals) that modify the chemistry of their surrounding seawater via their metabolism, causing substantial fluctuations in oxygen, dissolved inorganic carbon, pH, and nutrients. The magnitude of these biologically driven chemical fluctuations is regulated by hydrodynamics, can exceed values predicted for the future open ocean, and creates chemical patchiness in subtidal areas at various spatial (µm to meters) and temporal (minutes to months) scales. Although the role of hydrodynamics is well explored for planktonic communities, its influence as a crucial driver of benthic organism and community functioning is poorly addressed, particularly in the context of ocean global change. Hydrodynamics can directly modulate organismal physiological activity or indirectly influence an organism's performance by modifying its habitat. This review addresses recent developments in (i) the influence of hydrodynamics on the biological activity of engineer species, (ii) the description of chemical habitats resulting from the interaction between hydrodynamics and biological activity, (iii) the role of these chemical habitat as refugia against ocean acidification and deoxygenation, and (iv) how species living in such chemical habitats may respond to ocean global change. Recommendations are provided to integrate the effect of hydrodynamics and environmental fluctuations in future research, to better predict the responses of coastal benthic ecosystems to ongoing ocean global change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-10
    Description: The Joint Task Force, Science Monitoring And Reliable Telecommunications (JTF SMART) Subsea Cables, is working to integrate environmental sensors for ocean bottom temperature, pressure, and seismic acceleration into submarine telecommunications cables. The purpose of SMART Cables is to support climate and ocean observation, sea level monitoring, observations of Earth structure, and tsunami and earthquake early warning and disaster risk reduction, including hazard quantification. Recent advances include regional SMART pilot systems that are the first steps to trans-ocean and global implementation. Examples of pilots include: InSEA wet demonstration project off Sicily at the European Multidisciplinary Seafloor and water column Observatory Western Ionian Facility; New Caledonia and Vanuatu; French Polynesia Natitua South system connecting Tahiti to Tubaui to the south; Indonesia starting with short pilot systems working toward systems for the Sumatra-Java megathrust zone; and the CAM-2 ring system connecting Lisbon, Azores, and Madeira. This paper describes observing system simulations for these and other regions. Funding reflects a blend of government, development bank, philanthropic foundation, and commercial contributions. In addition to notable scientific and societal benefits, the telecommunications enterprise’s mission of global connectivity will benefit directly, as environmental awareness improves both the integrity of individual cable systems as well as the resilience of the overall global communications network. SMART cables support the outcomes of a predicted, safe, and transparent ocean as envisioned by the UN Decade of Ocean Science for Sustainable Development and the Blue Economy. As a continuation of the OceanObs’19 conference and community white paper (Howe et al., 2019, doi: 10.3389/fmars.2019.00424), an overview of the SMART programme and a description of the status of ongoing projects are given.
    Description: Published
    Description: 775544
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    UNIV FEDERAL CEARA
    In:  EPIC3Arquivos de Ciencias Do Mar, UNIV FEDERAL CEARA, 55, pp. 298-337, ISSN: 0374-5686
    Publication Date: 2022-06-22
    Description: Environmental DNA (eDNA) studies have burgeoned over the last two decades and the application of eDNA has increased exponentially since 2010, albeit at a slower pace in the marine system. We provide a literature overview on marine metazoan eDNA studies and assess recent achievements in answering questions related to species distributions, biodiversity and biomass. We investigate which are the better studied taxonomic groups, geographic regions and the genetic markers used. We evaluate the use of eDNA for addressing ecological and environmental issues through food web, ecotoxicological, surveillance and management studies. Based on this state of the art, we highlight exciting prospects of eDNA for marine time series, population genetic studies, the use of natural sampler DNA, and eDNA data for building trophic networks and ecosystem models. We discuss the current limitations, in terms of marker choice and incompleteness of reference databases. We also present recent advances using experiments and modeling to better understand persistence, decay and dispersal of eDNA in coastal and oceanic systems. Finally, we explore promising avenues for marine eDNA research, including autonomous or passive eDNA sampling, as well as the combined applications of eDNA with different surveillance methods and further molecular advances.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-14
    Description: Technological breakthroughs and policy measures targeting energy efficiency and clean energy alone will not suffice to deliver Paris Agreement-compliant greenhouse gas emissions trajectories in the next decades. Strong cases have recently been made for acknowledging the decarbonisation potential lying in transforming linear economic models into closed-loop industrial ecosystems and in shifting lifestyle patterns towards this direction. This perspective highlights the research capacity needed to inform on the role and potential of the circular economy for climate change mitigation and to enhance the scientific capabilities to quantitatively explore their synergies and trade-offs. This begins with establishing conceptual and methodological bridges amongst the relevant and currently fragmented research communities, thereby allowing an interdisciplinary integration and assessment of circularity, decarbonisation, and sustainable development. Following similar calls for science in support of climate action, a transdisciplinary scientific agenda is needed to co-create the goals and scientific processes underpinning the transition pathways towards a circular, net-zero economy with representatives from policy, industry, and civil society. Here, it is argued that such integration of disciplines, methods, and communities can then lead to new and/or structurally enhanced quantitative systems models that better represent critical industrial value chains, consumption patterns, and mitigation technologies. This will be a crucial advancement towards assessing the material implications of, and the contribution of enhanced circularity performance to, mitigation pathways that are compatible with the temperature goals of the Paris Agreement and the transition to a circular economy.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-18
    Description: This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios. The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies. The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated. The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-07
    Description: The Arctic is the region on Earth expected to experience the highest rate of warming caused by climate change. Ocean warming is directly and indirectly decreasing oxygen concentration in the ocean, therewith confronting marine biota with a change of two crucial abiotic factors. Polar cod Boreogadus saida is an Arctic key stone species due to its central position in the food web. In order to contribute to a better understanding of its upper thermal limits and the synergistic effects of warming and decreasing oxygen availability on its metabolic and swimming capacity, Polar cod were acclimated to a temperature hypothesised to belong to its upper thermal limit (10°C) over 10 months. Using static and swim tunnel respirometry 10°C were found to clearly belong to the pejus temperature range of Polar cod although aerobic scope and swimming capacity were maintained at this temperature. No metabolic compensation was observed for standard metabolic rate that increased by a factor of five. A significant PO2 effect on maximum metabolic rate and aerobic scope was observed when measuring metabolic and swimming capacity at decreasing ambient oxygen levels. Polar cod displayed oxy regulation over the whole PO2 range tolerated. Critical velocity stayed stable until 40% ambient O2 saturation whereas gait transition velocity decreased non-significantly at 50% O2. Temperature had a strong negative effect on hypoxia tolerance by increasing Pcmax and Pcrit to 12.53 and 5.22 kPa O2, respectively. We observed that water masses of 10°C can be tolerated in short-term by Polar cod but do not allow for population survival. Hypoxia tolerance was found to be strongly decreased at the long-term incubation temperature but still remained high in inter-species comparison and with respect to 10°C as pejus temperature. Future research should address hypoxia tolerance of Polar cod during acute warming to understand the physiological impacts during marine heatwaves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...