GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (6)
  • Open Access-Papers  (6)
  • ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD  (3)
  • WILEY-BLACKWELL PUBLISHING  (3)
  • 2020-2022  (6)
  • 1
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of Environmental Management, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 255, pp. 109876, ISSN: 0301-4797
    Publication Date: 2019-11-28
    Description: Understanding the distribution and structure of biotopes is essential for marine conservation according to international legislation, such as the European Marine Strategy Framework Directive (MSFD). The biotope ‘Sea Pen and Burrowing Megafuna Communities’ is included in the OSPAR list of threatened and/or declining habitats. Accordingly, the MSFD prescribes a monitoring of this biotope by the member states of the EU. In the German North Sea, however, the distribution and spatial extent of this biotope as well as the structuring of its benthic species inventory is unknown. We used an extensive geo-referenced dataset on occurrence, abundance and biomass of the benthic infauna of the south-eastern North Sea to estimate the distribution of the biotope and to characterize the associated infauna assemblages. Sediment preferences of the burrowing megafauna, comprising decapod crustaceans and echiurids, were identified and the core distribution areas of the burrowing megafauna were modelled using Random Forests. Clusters of benthic infauna inside the core distribution areas were identified by fuzzy clustering. The burrowing megafauna occurred on a wide range of sediments with varying mud contents. The core distribution area of the burrowing megafauna was characterized by elevated mud content and a water depth of 25–55 m. The analysis of the benthic communities and their relation to sedimentological conditions identified four infauna clusters of slightly varying species composition. The biotope type ‘Sea Pen and Burrowing Megafuna Communities’ is primarily located inside the paleo valley of the river Elbe and covers an area of 4980 km2. Dedicated monitoring will have to take into account the spatial extent and the structural variability of the biotope. Our results can provide a baseline for the evaluation of the future development of the environmental status of the biotope. The maps generated herein will facilitate the communication of information relevant for environmental management to authorities and policy makers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of Environmental Management, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 279(111762), ISSN: 0301-4797
    Publication Date: 2020-12-28
    Description: Offshore wind power generation requires large areas of sea to accommodate its activities, with increasing claims for exclusive access. As a result, pressure is placed on other established maritime uses, such as commercial fisheries. The latter sector has often been taking a back seat in the thrust to move energy production offshore, thus leading to disagreements and conflicts among the different stakeholder groups. In recognition of the latter, there has been a growing international interest in exploring the combination of multiple maritime activities in the same area (multi-use; MU), including the re-instatement of fishing activities within, or in close proximity to, offshore wind farms (OWFs). We summarise local stakeholder perspectives from two sub-national case studies (East coast of Scotland and Germany's North Sea EEZ) to scope the feasibility of combining multiple uses of the sea, such as offshore wind farms and commercial fisheries. We combined a desk-based review with 15 semi-structured qualitative interviews with key knowledge holders from both industries, regulators, and academia to aggregate key results. Drivers, barriers and resulting effects (positive and negative) for potential multi-use of fisheries and OWFs are listed and ranked (57 factors in total). Factors are of economic, social, policy, legal, and technical nature. To date, in both case study areas, the offshore wind industry has shown little interest in multi-use solutions, unless clear added value is demonstrated and no risks to their operations are involved. In contrast, the commercial fishing sector is proactive towards multi-use projects and acts as a driving force for MU developments. We provide a range of management recommendations, based on stakeholder input, to support progress towards robust decision making in relation to multi-use solutions, including required policy and regulatory framework improvements, good practice guidance, empirical studies, capacity building of stakeholders and improvements of the consultation process. Our findings represent a comprehensive depiction of the current state and key stakeholder aspirations for multi-use solutions combining fisheries and OWFs. We believe that the pathways towards robust decision making in relation to multi-use solutions suggested here are transferable to other international locations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-26
    Description: 1. Plant diversity is an important driver of belowground ecosystem functions, such as root growth, soil organic matter (SOM) storage, and microbial metabolism, mainly by influencing the interactions between plant roots and soil. Dissolved organic matter (DOM), as the most mobile form of SOM, plays a crucial role for a multitude of soil processes that are central for ecosystem functioning. Thus, DOM is likely to be an important mediator of plant diversity effects on soil processes. However, the relationships between plant diversity and DOM have not been studied so far. 2. We investigated the mechanisms underlying plant diversity effects on concentrations of DOM using continuous soil water sampling across 6 years and 62 plant communities in a long‐term grassland biodiversity experiment in Jena, Germany. Furthermore, we investigated plant diversity effects on the molecular properties of DOM in a subset of the samples. 3. Although DOM concentrations were highly variable over the course of the year with highest concentrations in summer and autumn, we found that DOM concentrations consistently increased with plant diversity across seasons. The positive plant diversity effect on DOM concentrations was mainly mediated by increased microbial activity and newly sequestered carbon in topsoil. However, the effect of soil microbial activity on DOM concentrations differed between seasons, indicating DOM consumption in winter and spring, and DOM production in summer and autumn. Furthermore, we found increased contents of small and easily decomposable DOM molecules reaching deeper soil layers with high plant diversity. 4. Synthesis. Our findings suggest that plant diversity enhances the continuous downward transport of DOM in multiple ways. On the one hand, higher plant diversity results in higher DOM concentrations, on the other hand, this DOM is less degraded. The present study indicates, for the first time, that higher plant diversity enhances the downward transport of dissolved molecules that likely stimulate soil development in deeper layers and therefore increase soil fertility.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Conservation Biology, WILEY-BLACKWELL PUBLISHING, ISSN: 0888-8892
    Publication Date: 2020-11-26
    Description: Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site‐selection biases influence estimates of biodiversity change is largely unknown. Site‐selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site‐selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site‐selection bias. We used a simple spatially resolved, individual‐based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site‐selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site‐selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site‐selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site‐selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site‐selection bias, we recommend use of systematic site‐selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site‐selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Estuarine Coastal and Shelf Science, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 245, ISSN: 0272-7714
    Publication Date: 2021-02-02
    Description: Introduced bioengineering organisms may fundamentally change native coastal ecosystems by modifying existing benthic habitat structures and thereby habitat-specific species interactions. The introduction of the Pacific oyster Magallana gigas into the sedimentary coastal area of the south-eastern North Sea and its preferred settlement on native blue mussel shells caused a large-scale shift from monospecific Mytilus edulis beds to current mixed reefs of mussels and oysters. To investigate whether the newly developed biotic habitat affects the occurrence of associated native key organisms and their ecological functions, we studied the long-term density trajectory of the gastropod Littorina littorea and its grazing activity on barnacles attached to Pacific oyster reefs in the northern Wadden Sea. We found no significant correlation between oyster and snail densities on blue mussel beds in the last two decades, which spans a time-period from the beginning of Pacific oyster establishment to today's oyster dominance. A manipulative field experiment revealed that snail density significantly affects the recruitment success of barnacles Semibalanus balanoides on oyster shells with the highest number of barnacle recruits at snail exclusion. Thus, density and grazing activity of the snail L. littorea may control barnacle population dynamics on epibenthic bivalve beds in the Wadden Sea. This interspecific interaction was already known for blue mussel beds before the oyster invasion and, therefore, we conclude that despite the strong modifications that non-native ecosystem engineers cause in native biotic habitats, the ecological functions of associated key species can remain unchanged.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-13
    Description: In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...