GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,506)
Document type
  • Articles  (1,506)
Source
Publisher
Years
Journal
  • 31
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): Shahedul Hoque, Hiroyuki Ito, Ryuji Nishi In our previous works, we have proposed N -SYLC ( N -fold sy mmetric l ine c urrents) models for aberration correction. In this paper, we propose “in-lens N -SYLC” model, where N -SYLC overlaps rotationally symmetric lens. Such overlap is possible because N -SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC ( N  = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-03-29
    Description: Publication date: Available online 26 March 2018 Source: Ultramicroscopy Author(s): Zirong Peng, Francois Vurpillot, Pyuck-Pa Choi, Yujiao Li, Dierk Raabe, Baptiste Gault In atom probe tomography (APT), multiple events can arise as a consequence of e.g. correlated field evaporation and molecular ion dissociation. They represent challenging cases for single-particle detectors and can cause compositional as well as spatial inaccuracies. Here, two state-of-the-art atom probe microscopes (Cameca LEAP 5000 XS and 5000 XR) were used to investigate cemented tungsten carbide, which exhibits high amounts of multiple events. By advanced data analysis methods, the natural character of the multiple events, as well as the performance of the APT detectors, are assessed. Accordingly, possible signal loss mechanisms are discussed.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2018-03-29
    Description: Publication date: March 2018 Source: Ultramicroscopy, Volume 186
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): György Sáfrán Phases of thin films may remarkably differ from that of bulk. Unlike to the comprehensive data files of Binary Phase Diagrams [1] available for bulk, complete phase maps for thin binary layers do not exist. This is due to both the diverse metastable, non-equilibrium or instable phases feasible in thin films and the required volume of characterization work with analytical techniques like TEM, SAED and EDS. The aim of the present work was to develop a method that remarkably facilitates the TEM study of the diverse binary phases of thin films, or the creation of phase maps. A micro-combinatorial method was worked out that enables both preparation and study of a gradient two-component film within a single TEM specimen. For a demonstration of the technique thin Mn x Al 1− x binary samples with evolving concentration from x  = 0 to x  = 1 have been prepared so that the transition from pure Mn to pure Al covers a 1.5 mm long track within the 3 mm diameter TEM grid. The proposed method enables the preparation and study of thin combinatorial samples including all feasible phases as a function of composition or other deposition parameters. Contrary to known “combinatorial chemistry”, in which a series of different samples are deposited in one run, and investigated, one at a time, the present micro-combinatorial method produces a single specimen condensing a complete library of a binary system that can be studied, efficiently, within a single TEM session. That provides extremely high throughput for TEM characterization of composition-dependent phases, exploration of new materials, or the construction of phase diagrams of binary films.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): S. Cao, A.M. Maiden, J.M. Rodenburg Electron ptychography can in principle convert a conventional scanning electron microscope (SEM) into a good quality transmission electron microscope (TEM). An improvement in resolution of about a factor of 5 over the lens-defined resolution of an SEM was first demonstrated by Humphry et al. (2012). However, the results from that work showed some delocalization in the atomic fringes of the gold particles used as a test specimen for the technique. Here we explore factors that result in the delocalization effect when a defocused probe is used for the ptychographic data collection: source incoherence, the effects of detector faults, data truncation and a poorly calibrated illumination step size (or camera length). Various mitigation strategies are tested, including modal decomposition of the incoherence in the beam. We reprocess the data from the original SEM experiment to show that these refinements significantly improve the reconstruction.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): Elena Pascal, Saransh Singh, Patrick G. Callahan, Ben Hourahine, Carol Trager-Cowan, Marc De Graef Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): E. Di Russo, I. Blum, J. Houard, M. Gilbert, G. Da Costa, D. Blavette, L. Rigutti A systematic study of the biases occurring in the measurement of the composition of GaN by Atom Probe Tomography was carried out, in which the role of surface electric field and laser pulse intensity has been investigated. Our data confirm that the electric field is the main factor influencing the measured composition, which exhibits a deficiency of N at low field and a deficiency of Ga at high field. The deficiency of Ga at high field is interpreted in terms of preferential evaporation of Ga. The detailed analysis of multiple evaporation events reveals that the measured composition is not affected by pile-up phenomena occurring in detection system. The analysis of correlation histograms yields the signature of the production of neutral N 2 due to the dissociation of GaN 3 2+ ions. However, the amount of N 2 neutral molecules that can be detected cannot account for the N deficiency found at low field. Therefore, we propose that further mechanisms of neutral N evaporation could be represented by dissociation reactions such as GaN + → Ga + + N and GaN 2+ → Ga 2 + + N.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-03-29
    Description: Publication date: June 2018 Source: Ultramicroscopy, Volume 189 Author(s): Hideto Dohi, Pieter Kruit Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed corrector system will be a promising candidate for simple and low-cost aberration correction in low-voltage SEMs.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): Misa Hayashida, Kai Cui, Marek Malac, Ray Egerton We measured the linear thermal expansion coefficients of amorphous 5–30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon ( a C) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): M. Radek, J.-G. Tenberge, S. Hilke, G. Wilde, M. Peterlechner Electron microscopy images are interference patterns and can generally not be interpreted in a straight forward manner. Typically, time consuming numerical simulations have to be employed to separate specimen features from imaging artifacts. Directly comparing numerical predictions to experimental results, realistic simulation box sizes and varying imaging parameters are needed. In this work, we introduce an accelerated multislice algorithm, named STEMcl , that is capable of simulating series of large super cells typical for defective and amorphous systems, in addition to parameter series using the massive parallelization accessible in today’s commercial PC-hardware, e.g. graphics processing units (GPUs). A new numerical approach is used to overcome the memory constraint limiting the maximum computable system size. This approach creates the possibility to study systematically the contrast formation arising by structural differences. STEM simulations of structure series of a crystalline Si and an amorphous CuZr system are presented and the contrast formation of vacancies/voids are studied. The detectability of vacancies/voids in STEM experiments is discussed in terms of density changes.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...