GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of climate, Boston, Mass. [u.a.] : AMS, 1988, 21(2008), 24, Seite 6599-6615, 1520-0442
    In: volume:21
    In: year:2008
    In: number:24
    In: pages:6599-6615
    Description / Table of Contents: The causes and characteristics of interannualdecadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global oceanice models (ORCA), varying in resolution from medium to eddy resolving (1/2ʿ1/12ʿ), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (noneddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30ʿ-35ʿN, by internally induced (eddy) fluctuations.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1520-0442
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Pages: 15 S , Ill
    Series Statement: Notes du pole de modélisation 13
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Type of Medium: Book
    Pages: 24 S , Ill
    Series Statement: Notes du pole de modélisation 7
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Type of Medium: Book
    Pages: 91 S , Ill., graph. Darst
    Series Statement: Notes du pole de modélisation 11
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geophysical research letters, Hoboken, NJ : Wiley, 1974, 32(2005), 1944-8007
    In: volume:32
    In: year:2005
    In: extent:4
    Description / Table of Contents: A new 0.5° resolution Mediterranean climatology of the mixed layer depth based on individual profiles of temperature and salinity has been constructed. The criterion selected is a threshold value of temperature from a near-surface value at 10 m depth, mainly derived by a method applied on the global (de Boyer Montégut et al., 2004 dBM04). With respect to dBM04, the main differences reside in the absence of spatial interpolation of the final fields and in the improved spatial resolution. These changes to the method are necessary to reproduce the Mediterranean mixed layer's behavior. In the derived climatological maps, the most relevant features of the basin surface circulation are reproduced, as well as the areas prone of the deep water formation are clearly identified. Finally, the role of density in the definition of the mixed layer's differing behaviors between the oriental and the occidental regions of the basin is presented.
    Type of Medium: Online Resource
    Pages: 4 , graph. Darst
    ISSN: 1944-8007
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1996), S. 381-388 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A semi-analytical method is presented for constructing a global orthogonal curvilinear ocean mesh which has no singularity point inside the computational domain since the mesh poles are moved to land points. The method involves defining an analytical set of mesh parallels in the stereographic polar plan, computing the associated set of mesh meridians, and projecting the resulting mesh onto the sphere. The set of mesh parallels proposed here is defined as a series of embedded circles. The resulting mesh presents no loss of continuity in either the mesh lines or the scale factors over the whole ocean domain, as the mesh is not a composite mesh. Thus, the Bering Strait can be opened without specific treatment. The equator is a mesh line, which provides a better numerical solution for equatorial dynamics. The resolution can be easily controlled through the definition of three analytical functions which can increase resolution and/or maintain a low ratio of anisotropy. The mesh has been implemented in the LODYC general circulation ocean model. Results of a semi-diagnostic simulation are shown.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1996), S. 381-388 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. A semi-analytical method is presented for constructing a global orthogonal curvilinear ocean mesh which has no singularity point inside the computational domain since the mesh poles are moved to land points. The method involves defining an analytical set of mesh parallels in the stereographic polar plan, computing the associated set of mesh meridians, and projecting the resulting mesh onto the sphere. The set of mesh parallels proposed here is defined as a series of embedded circles. The resulting mesh presents no loss of continuity in either the mesh lines or the scale factors over the whole ocean domain, as the mesh is not a composite mesh. Thus, the Bering Strait can be opened without specific treatment. The equator is a mesh line, which provides a better numerical solution for equatorial dynamics. The resolution can be easily controlled through the definition of three analytical functions which can increase resolution and/or maintain a low ratio of anisotropy. The mesh has been implemented in the LODYC general circulation ocean model. Results of a semi-diagnostic simulation are shown.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-31
    Description: Vast amounts of methane hydrates are potentially stored in sediments along the continental margins, owing their stability to low temperature – high pressure conditions. Global warming could destabilize these hydrates and cause a release of methane (CH 4) into the water column and possibly the atmosphere. Since the Arctic has and will be warmed considerably, Arctic bottom water temperatures and their future evolution projected by a climate model were analyzed. The resulting warming is spatially inhomogeneous, with the strongest impact on shallow regions affected by Atlantic inflow. Within the next 100 years, the warming affects 25% of shallow and mid-depth regions containing methane hydrates. Release of methane from melting hydrates in these areas could enhance ocean acidification and oxygen depletion in the water column. The impact of methane release on global warming, however, would not be significant within the considered time span.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-31
    Description: Formed under low temperature – high pressure conditions vast amounts of methane hydrates are considered to be locked up in sediments of continental margins including the Arctic shelf regions [1, 2]. Because the Arctic has warmed considerably during the recent decades and because climate models predict accelerated warming if global greenhouse gas emissions continue to rise, it is debated whether shallow Arctic hydrate deposits could be destabilized in the near future [3, 4]. Methane (CH4), a greenhouse gas with a global warming potential about 25 times higher than CO2, could be released from the melting hydrates and enter the water column and atmosphere with uncertain consequences for the environment. Here we present the results of a recent comprehensive study of the future fate of Arctic methane hydrates [5]. Our multi-disciplinary analysis provides a closer look into regional developments of submarine Arctic gas hydrate deposits under future global warming scenarios and reveals where and over which time scales gas hydrates could be destabilized and affect oceanic pH, oxygen, and atmospheric methane. Arctic bottom water temperatures and their future evolution are projected by a climate model. Predicted bottom water warming is spatially inhomogeneous, with strongest impact on shallow regions affected by Atlantic inflow. Within the next 100 years, the warming affects 25% of shallow and mid-depth regions (water depth 〈 600 m) containing methane hydrates. We have quantified methane release from melting hydrates using transient models resolving the change in stability zone thickness. Due to slow heat diffusion rates, the change in stability zone thickness over the next 100 years is small and methane release limited. Even if these methane emissions were to reach the atmosphere, their climatic impact would be negligible as a climate model run confirms. However, the released methane, if dissolved into the water column, may contribute to ocean acidification and oxygen depletion in the water column. [1]Hester, K.C. and P.G. Brewer, Clathrate Hydrates in Nature. Annual Review of Marine Science, 2009. 1: p. 303-327. [2]Buffett, B.A. and D. Archer, Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. Earth and Planetary Science Letters, 2004. 227: p. 185 - 199. [3]Reagan, M.T. and G.J. Moridis, Oceanic gas hydrate instability and dissociation under climate change scenarios. 2007. 34: p. L22709. [4]Kerr, R.A., 'Arctic Armageddon'Needs More Science, Less Hype. Science, 2010. 329: p. 620. [5]Biastoch, A., et al., Rising Artic ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, 2011. 38(L08602).
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Highlights: • Phase II of the Coordinated Ocean-ice Reference Experiments (CORE-II) is introduced. • Solutions from CORE-II simulations from eighteen participating models are presented. • Mean states in the North Atlantic with a focus on AMOC are examined. • The North Atlantic solutions differ substantially among the models. • Many factors, including parameterization choices, contribute to these differences. Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...