GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 11
    Publication Date: 2021-06-23
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Brill
    In:  In: New Knowledge and Changing Circumstances in the Law of the Sea. , ed. by Heidar, T. Brill, Leiden, pp. 327-342. ISBN 978-90-04-43775-3
    Publication Date: 2020-09-14
    Description: Exploitation of mineral ores from the deep sea will impact the abyssal environment by removing the mineral deposits and sediments from the seafloor surface, where most deep-sea benthic life is found. Additional effects are expected from the blanketing of the mined area and the pristine surrounding seabed with sediments and/or mineral debris. As a consequence, seafloor integrity is lost in the impacted area, species densities and biodiversity are reduced, and ecosystem functions are negatively affected. Although a lot of open questions remain regarding, for example, indicator species, disturbance thresholds, and renaturation options, it is becoming increasingly clear that the induced environmental impacts last for at least many decades to centuries and affect all ecosystem compartments.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  [Paper] In: UMI 2013 - 42. Underwater Mining Conference, 21.-29.10.2013, Rio de Janeiro and Porto de Galinhas, Brazil .
    Publication Date: 2018-01-08
    Description: Between 2008 and 2013, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out five exploration cruises to the German license area in the eastern Pacific Nodule Belt. The first two expeditions were mainly dedicated to multibeam mapping to obtain an overview of the seafloor topography and acoustic backscatter strength. These data were used to identify ten to fourteen prospective nodule fields for potential future mining, which together cover about 16% of the total license area of 75,000 km2. During the last three cruises, three of these potential mining areas were explored in detail. For this purpose, the BGR developed a suite of exploration methods to map nodule size distributions and nodule abundances. These methods include acoustic surveys with vessel-based multibeam systems as well as near-bottom video mapping complemented by in situ sampling. The economically most valuable field has a size of ca. 2,000 km2, of which 34% is covered by medium to large nodules (〉 4 cm long axis of nodules) with an average abundance of 22.4 kg/m2 and 44% is covered by small nodules (〈 4 cm) with a mean abundance of 17.5 kg/m2. The total mass of nodules in this field comprises more than 30 million tons wet weight and could sustain deep-sea mining for at least 10 years.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-06
    Description: Uncertainties concerning deep-seabed mining relate to the expected impacts on the abyssal benthic and pelagic environment and its ecosystems but also include geopolitical, economic, societal and cultural uncertainty. The uncertain impacts from mining lead to anxiety and a low societal acceptance for the activity and are not the same for everybody at the same time. Hence, uncertainty is an important element of the risk involved in deep-seabed mining. This chapter describes the different risks involved, develops a methodology for risk assessment for the exploitation of marine mineral resources that takes into consideration the state of knowledge and evolving research on deep-sea ecosystems, and informs on possible environmental threshold values in relation to deep-seabed mining operations.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-02-08
    Description: The largest and commercially appealing mineral deposits can be found in the abyssal seafloor of the Clarion-Clipperton Zone (CCZ), a polymetallic nodule province, in the NE Pacific Ocean, where experimental mining is due to take place. In anticipation of deep-sea mining impacts, it has become essential to rapidly and accurately assess biodiversity. For this reason, ophiuroid material collected during seven scientific cruises from five exploration license areas within CCZ, one area protected from mining (APEI3, Area of Particular Environmental Interest) in the periphery of CCZ and the DIS-turbance and re-COLonisation (DISCOL) Experimental Area (DEA), in the SE Pacific Ocean, was examined. Specimens were genetically analysed using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI). Maximum Likelihood and Neighbour Joining trees were constructed, while four tree-based and distance-based methods of species delineation (ABGD, BINs, GMYC, mPTP) were employed to propose Secondary Species Hypotheses (SSHs) within the ophiuroids collected. The species delimitations analyses concordant results revealed the presence of 43 deep-sea brittle stars SSHs, revealing an unexpectedly high diversity and showing that the most conspicuous invertebrates in abyssal plains have been so far considerably under-estimated. The number of SSHs found in each area varied from 5 (IFREMER area) to 24 (BGR area), while 13 SSHs were represented by singletons. None of the SSHs was found to be present in all 7 areas, while the majority of species (44.2 %) had a single-area presence (19 SSHs). The most common species were Ophioleucidae sp. (Species 29), Amphioplus daleus (Species 2) and Ophiosphalma glabrum (Species 3), present in all areas except APEI3. The biodiversity patterns could be mainly attributed to POC fluxes that could explain the highest species numbers found in BGR (German contractor area) and UKSRL (UK contractor area) areas. The five exploration contract areas belong to a mesotrophic province, while in contrary the APEI3 is located in an oligotrophic province which could explain the lowest diversity as well as very low similarity with the other six study areas. Based on these results the representativeness and the appropriateness of APEI3 to meet its purpose of preserving the biodiversity of the CCZ fauna are questioned. Finally, this study provides the foundation for biogeographic and functional analyses that will provide insight into the drivers of species diversity and its role in ecosystem function.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-08
    Description: There has been a steady increase in interest in mining of deep-sea minerals in the Clarion–Clipperton Zone (CCZ) in the eastern Pacific Ocean during the last decade. This region is known to be one of the most eddy-rich regions in the world ocean. Typically, mesoscale eddies are generated by intense wind bursts channeled through gaps in the Sierra Madre mountains in Central America. Here, we use a combination of satellite and in situ observations to evaluate the relationship between deep-sea current variability in the region of potential future mining and eddy kinetic energy (EKE) in the vicinity of gap winds. A geometry-based eddy detection algorithm has been applied to altimetry sea surface height data for a period of 24 years, from 1993 to 2016, in order to analyze the main characteristic parameters and the spatiotemporal variability of mesoscale eddies in the northeast tropical Pacific Ocean (NETP). Significant differences between the characteristics of eddies with different polarity (cyclonic vs. anticyclonic) were found. For eddies with lifetimes longer than 1 d, cyclonic polarity is more common than anticyclonic rotation. However, anticyclonic eddies are larger in size, show stronger vorticity, and survive longer in the ocean than cyclonic eddies (often 90 d or more). Besides the polarity of eddies, the location of eddy formation should be taken into consideration when investigating the impacted deep-ocean region as we found eddies originating from the Tehuantepec (TT) gap winds lasting longer in the ocean and traveling farther distances in a different direction compared to eddies produced by the Papagayo (PP) gap winds. Long-lived anticyclonic eddies generated by the TT gap winds are observed to travel distances up to 4500 km offshore, i.e., as far as west of 110∘ W. EKE anomalies observed in the surface of the central ocean at distances of ca. 2500 km from the coast correlate with the seasonal variability of EKE in the region of the TT gap winds with a time lag of 5–6 months. A significant seasonal variability of deep-ocean current velocities at water depths of 4100 m was observed in multiple-year time series data, likely reflecting the energy transfer of the surface EKE generated by the gap winds to the deep ocean. Furthermore, the influence of mesoscale eddies on deep-ocean currents is examined by analyzing the deep-ocean current measurements when an anticyclonic eddy crosses the study region. Our findings suggest that despite the significant modulation of dominant current directions driven by the bottom-reaching eddy, the current magnitude intensification was not strong enough to trigger local sediment resuspension in this region. A better insight into the annual variability of ocean surface mesoscale activity in the CCZ and its effects on deep-ocean current variability can be of great help to mitigate the impact of future potential deep-sea mining activities on the benthic ecosystem. On an interannual scale, a significant relationship between cyclonic eddy characteristics and El Niño–Southern Oscillation (ENSO) was found, whereas a weaker correlation was detected for anticyclonic eddies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-08
    Description: There is a strong economic interest in commercial deep‐sea mining of polymetallic nodules and therefore a need to define suitable preservation zones in the abyssal plain of the Clarion Clipperton Fracture Zone (CCZ). However, besides ship‐based multibeam data, only sparse continuous environmental information is available over large geographic scales. We test the potential of modelling meiofauna abundance and diversity on high taxonomic level on large geographic scale using a random forest approach. Ship‐based multibeam bathymetry and backscatter signal are the only sources for 11 predictor variables, as well as the modelled abundance of polymetallic nodules on the seafloor. Continuous meiofauna predictions have been combined with all available environmental variables and classified into classes representing abyssal habitats using k‐means clustering. Results show that ship‐based, multibeam‐derived predictors can be used to calculate predictive models for meiofauna distribution on a large geographic scale. Predicted distribution varies between the different meiofauna response variables. To evaluate predictions, random forest regressions were additionally computed with 1,000 replicates, integrating varying numbers of sampling positions and parallel samples per site. Higher numbers of parallel samples are especially useful to smoothen the influence of the remarkable variability of meiofauna distribution on a small scale. However, a high number of sampling positions is even more important, integrating a greater amount of natural variability of environmental conditions into the model. Synthesis and applications. Polymetallic nodule exploration contractors are required to define potential mining and preservation zones within their licence area. The biodiversity and the environment of preservation zones should be representative of the sites that will be impacted by mining. Our predicted distributions of meiofauna and the derived habitat maps are an essential first step to enable the identification of areas with similar ecological conditions. In this way, it is possible to define preservation zones not only based on expert opinion and environmental proxies but also integrating evidence from the distribution of benthic communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-11-18
    Description: Abyssal plains of the Clarion Clipperton Fracture Zone (CCZ) in the NE Pacific Ocean probably harbour one of the world’s most diverse ecosystems. Gaining a basic understanding of the mechanisms underlying the evolution and persistence of CCZ biodiversity in terms of biogeography and connectivity has both scientific merit and informs the development of policy related to potential future deep-sea mining of mineral resources at an early stage in the process. Existing archives of polychaetes and isopods were sorted using a combined molecular and morphological approach, which uses nucleotide sequences (cytochrome c oxidase subunit I (COI)) and morphological information to identify appropriate sample sets for further investigations. Basic patterns of genetic diversity, divergence and demographic history of five polychaete and five isopod species were investigated. Polychaete populations were found to be genetically diverse. Pronounced long- and short-distance dispersal produces large populations that are continuously distributed over large geographic scales. Although analyses of isopod species suggest the same, spatial genetic structuring of populations do imply weak barriers to gene flow. Mining-related, large-scale habitat destruction has the potential to impact the continuity of both isopod and polychaete populations as well as their long-term dispersal patterns, as ecosystem recovery after major impacts is predicted to occur slowly at evolutionary time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-01-31
    Description: The anthropogenic impact of polymetallic nodule harvesting in the Clarion-Clipperton Fracture Zone is expected to strongly affect the benthic ecosystem. To predict the long-term, industrial-scale impact of nodule mining on the deep-sea environment and to improve the reliability of the sediment plume model, information about the specific characteristics of deep-sea particles is needed. Discharge simulations of mining-related fine-grained (median diameter ≈ 20 μm) sediment plumes at concentrations of 35–500 mg L–1 (dry weight) showed a propensity for rapid flocculation within 10 to 135 min, resulting in the formation of large aggregates up to 1100 μm in diameter. The results indicated that the discharge of elevated plume concentrations (500 mg L–1) under an increased shear rate (G ≥ 2.4 s–1) would result in improved efficiency of sediment flocculation. Furthermore, particle transport model results suggested that even under typical deep-sea flow conditions (G ≈ 0.1 s–1), rapid deposition of particles could be expected, which would restrict heavy sediment blanketing (several centimeters) to a smaller fall-out area near the source, unless subsequent flow events resuspended the sediments. Planning for in situ tests of these model projections is underway
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-01-08
    Description: The Clarion Clipperton Fracture Zone (CCZ) is a vast deep-sea region harboring a highly diverse benthic fauna, which will be affected by potential future deep-sea mining of metal-rich polymetallic nodules. Despite the need for conservation plans and monitoring strategies in this context, the majority of taxonomic groups remain scientifically undescribed. However, molecular rapid assessment methods such as DNA barcoding and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) provide the potential to accelerate specimen identification and biodiversity assessment significantly in the deep-sea areas. In this study, we successfully applied both methods to investigate the diversity of meiobenthic copepods in the eastern CCZ, including the first application of MALDI-TOF MS for the identification of these deep-sea organisms. Comparing several different species delimitation tools for both datasets, we found that biodiversity values were very similar, with Pielou’s evenness varying between 0.97 and 0.99 in all datasets. Still, direct comparisons of species clusters revealed differences between all techniques and methods, which are likely caused by the high number of rare species being represented by only one specimen, despite our extensive dataset of more than 2000 specimens. Hence, we regard our study as a first approach toward setting up a reference library for mass spectrometry data of the CCZ in combination with DNA barcodes. We conclude that proteome fingerprinting, as well as the more established DNA barcoding, can be seen as a valuable tool for rapid biodiversity assessments in the future, even when no reference information is available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...