GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Schlagwörter
Erscheinungszeitraum
  • 11
    Publikationsdatum: 2024-02-14
    Beschreibung: Time series of currents were obtained in the period May- June 2014 by use of an ice-tethered mooring in Young Sound, Greenland. At YS07 (74.233o N, 20.133o W) the mooring consisted of a 600 kHz downward-looking Nortek Aquadopp ADCP. Velocities were corrected for magnetic deviation (18.5o). The water column sampling spanned between 1.5 and 30 m depth every 30 min. The ADCP was set to sample 80 bins (bin size of 0.5 m) and each bin consisted of a 1 min ensamble average of 60 pings. The first and last bins were centred at 1m and 41 m depth. Only bins between 2.5 and 30 m were adequately measured. For further details see Boone et al., 2017 (Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northwest Greenland (74o N). Estuar. Coast. Shelf Sci., 15, 194-205. https://doi.org/10.1016/j.ecss.2017.06.021).
    Schlagwort(e): Acoustic Doppler Current Profiling (ADCP), Nortek Aquadopp 600 khz; Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Event label; Hydrographic time series; ice-covered conditions; LATITUDE; LONGITUDE; Nortek Acoustic Wave and Current Profiler (AWAC); Pressure, water; Young Sound, Greenland; Young Sound-Greenland; YS07
    Materialart: Dataset
    Format: text/tab-separated-values, 2601120 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2024-02-22
    Beschreibung: Time series of currents were obtained in the period May- June 2014 by use of an ice-tethered mooring in Young Sound, Greenland. At YS06 (74.245o N, 20.229o W) the mooring consisted of a 600 kHz downward-looking Nortek Aquadopp ADCP. Velocities were corrected for magnetic deviation (18.5o). The water column sampling spanned between 1.5 and 30 m depth every 30 min. The ADCP was set to sample 80 bins (bin size of 0.5 m) and each bin consisted of a 1 min ensamble average of 60 pings. The first and last bins were centred at 1m and 41 m depth. Only bins between 2.5 and 30 m were adequately measured. For further details see Boone et al., 2017 (Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northwest Greenland (74o N). Estuar. Coast. Shelf Sci., 15, 194-205. https://doi.org/10.1016/j.ecss.2017.06.021).
    Schlagwort(e): Acoustic Doppler Current Profiling (ADCP), Nortek Aquadopp 600 khz; Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Event label; Hydrographic time series; ice-covered conditions; LATITUDE; LONGITUDE; Nortek Acoustic Wave and Current Profiler (AWAC); Pressure, water; Young Sound, Greenland; Young Sound-Greenland; YS06
    Materialart: Dataset
    Format: text/tab-separated-values, 2606160 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2024-02-22
    Beschreibung: Time series of currents were obtained in the period October 2013 and May 2014 by use of an ice-tethered mooring in Young Sound, Greenland. At YS02 (74.267o N, 20.248o W) the mooring consisted of a 300 kHz downward-looking Teledyne RDI Workhorse Sentinel acoustic Doppler current profiler (ADCP) measuring horizontal and vertical current velocities. Velocity precision and resolution were ±1% and ±5 cm s-1, respectively, while compass accuracy and resolution were ±2 and 0.1 degrees. The ADCP was set to sample 39 bins (bin size of 2m), where each 10 min sample consists of averages of 20 pings. The first and last bins were set at 6 and 84 m depth. Velocities were corrected for magnetic deviation (18.5 degrees) and samples with insufficient acoustic backscatter in the water column were eliminated with the RDI ADCP software. For further details see Boone et al., 2017 (Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northwest Greenland (74o N). Estuar. Coast. Shelf Sci., 15, 194-205. https://doi.org/10.1016/j.ecss.2017.06.021).
    Schlagwort(e): Acoustic Doppler Current Profiling (ADCP), TRDI Workhorse Sentinel, 300 kHz; Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Event label; Hydrographic time series; ice-covered conditions; LATITUDE; LONGITUDE; Pressure, water; Young Sound, Greenland; Young Sound-Greenland; YS02
    Materialart: Dataset
    Format: text/tab-separated-values, 3144532 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2024-02-27
    Beschreibung: We collected filtered seawater samples from full water column profiles conducted near the Lena River delta during a winter expedition to the Laptev Sea. The samples were recovered during TRANSDRIFT XX Expedition in March and April 2012 using 2-l-Niskin bottles mounted on a frame equipped with a SBE 19plus CTD profiler (Sea-Bird Electronics Inc.). The dataset includes silicate, phosphate and oxygen concentration data of 28 seawater samples, which provide important information on nutrient sources and cycling in the Laptev Sea.
    Schlagwort(e): CTD, Sea-Bird, SBE 19plus; CTD/Rosette; CTD-RO; DATE/TIME; Depth, bathymetric; DEPTH, water; Event label; Helicopter; Laptev Sea; Laptev Sea System; LATITUDE; LONGITUDE; LSS; nutrients; Oxygen, dissolved; Oxygen saturation; Phosphate; Salinity; Silicate; Station label; Temperature, water; TI12_02-1; TI12_05-2; TI12_06-1; TI12_07-1; TI12_09-2; TI12_10-2; Transdrift-XX; winter
    Materialart: Dataset
    Format: text/tab-separated-values, 224 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bauch, Dorothea; Dmitrenko, Igor; Wegner, Carolyn; Hölemann, Jens A; Kirillov, Sergey A; Timokhov, Leonid; Kassens, Heidemarie (2009): Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing. Journal of Geophysical Research: Oceans, 114, C05008, https://doi.org/10.1029/2008JC005062
    Publikationsdatum: 2024-04-16
    Beschreibung: Combined d18O/salinity data reveal a distinctive water mass generated during winter sea ice formation which is found predominantly in the coastal polynya region of the southern Laptev Sea. Export of the brine-enriched bottom water shows interannual variability in correlation with atmospheric conditions. Summer anticyclonic circulation is favoring an offshore transport of river water at the surface as well as a pronounced signal of brine-enriched waters at about 50 m water depth at the shelf break. Summer cyclonic atmospheric circulation favors onshore or an eastward, alongshore water transport, and at the shelf break the river water fraction is reduced and the pronounced brine signal is missing, while on the middle Laptev Sea shelf, brine-enriched waters are found in high proportions. Residence times of bottom and subsurface waters on the shelf may thereby vary considerably: an export of shelf waters to the Arctic Ocean halocline might be shut down or strongly reduced during "onshore" cyclonic atmospheric circulation, while with "offshore" anticyclonic atmospheric circulation, brine waters are exported and residence times may be as short as 1 year only.
    Schlagwort(e): ARK-XIV/1b; CTD/Rosette; CTD-RO; East Siberian Sea; Giant box corer; GKG; Helicopter; IK03-01-A; IK03-02-A; IK03-03-A; IK03-03-B; IK03-04-A; IK03-05-A; IK03-06-A; IK03-07-A; IK03-08-A; IK03-09-A; IK03-10-A; IK03-11-A; IK03-12-A; IK03-13-A; IK03-14-A; IK03-15-A; IK03-16-A; IK03-17-A; IK03-18-A; IK03-19-A; IK03-20-A; IK03-21-A; IK03-22-A; IK03-23-A; IK93_1; IK93_10; IK93_100; IK93_101; IK93_102; IK93_103; IK93_104; IK93_105; IK93_106; IK93_107; IK93_108; IK93_109; IK93_11; IK93_110; IK93_111; IK93_112; IK93_113; IK93_114; IK93_115; IK93_116; IK93_117; IK93_118; IK93_119; IK93_12; IK93_120; IK93_121; IK93_122; IK93_123; IK93_124; IK93_125; IK93_126; IK93_127; IK93_128; IK93_129; IK93_13; IK93_130; IK93_131; IK93_14; IK93_15; IK93_16; IK93_17; IK93_18; IK93_19; IK93_2; IK93_20; IK93_21; IK93_22; IK93_23; IK93_24; IK93_25; IK93_26; IK93_27; IK93_28; IK93_29; IK93_3; IK93_30; IK93_31; IK93_32; IK93_33; IK93_34; IK93_35; IK93_36; IK93_37; IK93_38; IK93_38a; IK93_39; IK93_4; IK93_40; IK93_41; IK93_42; IK93_43; IK93_44; IK93_45; IK93_45a; IK93_46; IK93_47; IK93_48; IK93_49; IK93_5; IK93_50; IK93_51; IK93_52; IK93_53; IK93_54; IK93_55; IK93_56; IK93_57; IK93_58; IK93_59; IK93_6; IK93_60; IK93_61; IK93_62; IK93_63; IK93_64; IK93_65; IK93_66; IK93_67; IK93_68; IK93_69; IK93_7; IK93_70; IK93_71; IK93_72; IK93_73; IK93_74; IK93_75; IK93_76; IK93_77; IK93_78; IK93_79; IK93_8; IK93_80; IK93_81; IK93_82; IK93_83; IK93_84; IK93_85; IK93_86; IK93_87; IK93_88; IK93_89; IK93_9; IK93_90; IK93_91; IK93_92; IK93_93; IK93_94; IK93_95; IK93_96; IK93_97; IK93_98; IK93_99; Ivan Kireyev; Kapitan Dranitsyn; Kara Sea; KD9501-1; KD9502-1; KD9502-2; KD9502-3; KD9502-4; KD9503-1; KD9504-1; KD9505-1; KD9506-1; KD9507-1; KD9508-1; KD9509-1; KD9510-1; KD9511-1; KD9512-1; KD9513-1; KD9514-1; KD9515-1; KD9516-1; KD9517-1; KD9518-1; KD9519-1; KD9520-1; KD9521-1; KD9522-1; KD9523-1; KD9524-1; KD9525-1; KD9526-1; KD9527-1; KD9528-1; KD9529-1; KD9530-1; KD9531-1; KD9532-1; KD9533-1; KD9534-1; KD9536-1; KD9538-1; KD9540-1; KD9541-1; KD9543-1; KD9545-1; KD9546-1; KD9547-1; KD9548-1; KD9549-1; KD9550-1; KD9551-1; KD9552-1; KD9553-1; KD9554-1; KD9555-1; KD9556-1; KD9557-1; KD9558-1; KD9559-1; KD9560-1; KD9564-1; KD9565-1; KD9566-1; KD9567-1; KD9568-1; KD9569-1; KD9570-1; KD9571-1; KD9573-1; KD9574-1; Laptev Sea; Laptev Sea System; Lena Nordenskøld Station; LN9601-1; LN9602-1; LN9603-1; LN9603A-2; LN9603B-2; LN9604-1; LN9604A-2; LN9604B-2; LN9605-1; LN9605A-1; LN9605B-1; LN9606-1; LN9606A-2; LN9606B-2; LN9608-2; LN9608A-3; LN9608B-2; LN9609-1; LN9609A-2; LN9609B-2; LN9610-1; LN9610A-2; LN9610B-1; LN9611-2; LN9611A-3; LN9611B-3; LN9612-1; LN9613-1; LN9614-1; LN9615-1; LN9616-1; LN9617-1; LN9618-1; LN9619-1; LN9620-1; LN9620A-2; LN9621-1; LN9621A-2; LN9622-1; LN9623-1; LN9623A-2; LN9624-2; LN9624A-1; LN9625-1; LSS; MULT; Multiple investigations; PM9401-1; PM9401-2; PM9401-3; PM9402-1; PM9402-2; PM9402-3; PM9402-4; PM9402-5; PM9402-6; PM9402-7; PM9403-1; PM9403-2; PM9404-1; PM9405-1; PM9405-2; PM9406-1; PM9407-1; PM9407-2; PM9408-1; PM9409-1; PM94100-1; PM9410-1; PM94101-1; PM9410-2; PM9411-1; PM9412-1; PM9413-1; PM9413-10; PM9413-11; PM9413-12; PM9413-13; PM9413-2; PM9413-3; PM9413-4; PM9413-5; PM9413-6; PM9413-7; PM9413-8; PM9413-9; PM9414-1; PM9415-1; PM9415-2; PM9416-1; PM9416-2; PM9417-1; PM9417-10; PM9417-11; PM9417-12; PM9417-13; PM9417-14; PM9417-15; PM9417-16; PM9417-17; PM9417-2; PM9417-3; PM9417-4; PM9417-5; PM9417-6; PM9417-7; PM9417-8; PM9417-9; PM9418-1; PM9418-2; PM9419-1; PM9419-2; PM9419-3; PM9420-1; PM9420-2; PM9421-1; PM9421-2; PM9422-1; PM9423-1; PM9424; PM9424-1; PM9424-10; PM9424-11; PM9424-12; PM9424-13; PM9424-14; PM9424-15; PM9424-16; PM9424-17; PM9424-18; PM9424-2; PM9424-20; PM9424-3; PM9424-4; PM9424-5; PM9424-6; PM9424-7; PM9424-8; PM9424-9; PM9425-1; PM9426-1; PM9426-2; PM9427-1; PM9427-2; PM9428-1; PM9428-2; PM9429-1; PM9429-2; PM9430-1; PM9430-2; PM9431-1; PM9431-2; PM9432-1; PM9432-2; PM9433-1; PM9433-2; PM9434-1; PM9435-1; PM9436-1; PM9436-2; PM9437-1; PM9437-2; PM9437-3; PM9438-1; PM9438-2; PM9439-1; PM9440-1; PM9440-2; PM9441-1; PM9441-2; PM9442-1; PM9442-2; PM9442-3; PM9442-4; PM9442-5; PM9442-6; PM9442-7; PM9442-8; PM9443-1; PM9443-2; PM9444-1; PM9444-2; PM9445-1; PM9445-10; PM9445-11; PM9445-12; PM9445-13; PM9445-14; PM9445-15; PM9445-16; PM9445-17; PM9445-2; PM9445-3; PM9445-4; PM9445-6; PM9445-7; PM9445-8; PM9445-9; PM9446-1; PM9447-1; PM9448-1; PM9449-1; PM9449-2; PM9450-1; PM9451-1; PM9452-1; PM9453-1; PM9454-1; PM9455-1; PM9456-1; PM9457-1; PM9458-1; PM9459-1; PM9460-1; PM9461-1; PM9462-1; PM9462-2; PM9463; PM9463-1; PM9463-10; PM9463-11; PM9463-12; PM9463-13; PM9463-14; PM9463-15; PM9463-16; PM9463-17; PM9463-18; PM9463-2; PM9463-20; PM9463-21; PM9463-22; PM9463-23; PM9463-24; PM9463-25; PM9463-26; PM9463-27; PM9463-28; PM9463-29; PM9463-3; PM9463-30; PM9463-31; PM9463-32; PM9463-33; PM9463-34; PM9463-35; PM9463-36; PM9463-37; PM9463-38; PM9463-39; PM9463-4; PM9463-40; PM9463-41; PM9463-42; PM9463-43; PM9463-5; PM9463-6; PM9463-7; PM9463-8; PM9463-9; PM9465-1; PM9466-1; PM9466-2; PM9466-3; PM9467-1; PM9467-2; PM9468-1; PM9468-2; PM9469-1; PM9469-2; PM9470-1; PM9470-2; PM9471-1; PM9472-1; PM9473-1; PM9474-1; PM9475-1; PM9476-1; PM9477-1; PM9478-1; PM9479-1; PM9480-1; PM9481-1; PM9483-1; PM9484-1; PM9485-1; PM9486-1; PM9487-1; PM9488-1; PM9489-1; PM9490-1; PM9491-1; PM9493-1; PM9493-2; PM9494-1; PM9495-1; PM9496-1; PM9497-1; PM9498-1; PM9499-1; PM94a33-1; PM94a51-10; PM94a51-11; PM94a51-12; PM94a51-13; PM94a51-14; PM94a51-15; PM94a51-16; PM94a51-17; PM94a51-18; PM94a51-2; PM94a51-3; PM94a51-4; PM94a51-5; PM94a51-6; PM94a51-7; PM94a51-8; PM94a51-9; PM94a57-1; PM94K01; PM94K02; PM94K03; PM94K04; PM94K05; PM94K06; PM94K07-1; PM94K08-1; PM94K08-2; PM94K09-1; PM94K09-2; PM94K10-1; PM94K10-2; PM94K11-1; PM94K12; PM94K12-1; PM94K12-11; PM94K12-12; PM94K12-13; PM94K12-14; PM94K12-15; PM94K12-16; PM94K12-17; PM94K12-18; PM94K12-2; PM94K12-20; PM94K12-21; PM94K12-22; PM94K12-23; PM94K12-24; PM94K12-25; PM94K12-26; PM94K12-27; PM94K12-28; PM94K12-29; PM94K12-3; PM94K12-4; PM94K12-5; PM94K12-6; PM94K12-7; PM94K12-8; PM94K12-9; PM94K13; PM94K13-1; PM94K13-10; PM94K13-11; PM94K13-12; PM94K13-13; PM94K13-14; PM94K13-15; PM94K13-16; PM94K13-17; PM94K13-18; PM94K13-2; PM94K13-20; PM94K13-21; PM94K13-22; PM94K13-23; PM94K13-24; PM94K13-25; PM94K13-26; PM94K13-27; PM94K13-28; PM94K13-29; PM94K13-3; PM94K13-30; PM94K13-31; PM94K13-32; PM94K13-33; PM94K13-34; PM94K13-4; PM94K13-5; PM94K13-6; PM94K13-7; PM94K13-8; PM94K13-9; PM94K14-1; PM94K14-2; PM94K14-3; PM94K14-4; PM94K14-5; PM94K15-1; PM94K16-1; Polarstern; Professor Multanovskiy; PS51/078-1; PS51/080-7; PS51/082-1; PS51/083-2; PS51/084-2; PS51/086-1; PS51/087-2; PS51/089-1; PS51/090-1; PS51/091-1; PS51/092-7; PS51/095-3; PS51/096-3; PS51/097-1; PS51/098-3; PS51/099-3; PS51/100-3; PS51/101-1; PS51/102-3; PS51/103-1; PS51/104-7; PS51/110-3; PS51/112-3; PS51/114-2; PS51/116-1; PS51/120-1; PS51/122-1; PS51/125-2; PS51/129-1; PS51/130-1; PS51/131-2; PS51/132-2; PS51/133-2; PS51/134-3; PS51/138-7; PS51/144-5; PS51/145-2; PS51/146-5; PS51/147-2; PS51/148-5; PS51/149-5; PS51/150-5; PS51/151-2; PS51/152-4; PS51/153-2; PS51/154-4; PS51/157-2; PS51/158-2; PS51/159-5; PS51 Transdrift-V; TI99; TI9901-1; TI9902-1; TI9903-1; TI9904-1; TI9905-1; TI9906-1; TI9907-1; TI9908-1; TI9909-1; TI9910-1; TI9911-1; TI9912-1; TI9913-1; TI9914-1; TI9915-1; TI9916-1; TI9917-1; TI9918-1; TI9919-1; TI9920-1; TI9921-1; TI9922-1; TI9923-1; TI9924-1; Transdrift-I; Transdrift-II; Transdrift-III; Transdrift-IV; Transdrift-IX; Transdrift-VI; Transdrift-VII; Transdrift-VIII; Water sample; WS; Yakov Smirnitskiy; YS00_01; YS00_02; YS00_03; YS00_04; YS00_05; YS00_06; YS00_07; YS00_08; YS00_09; YS00_10; YS00_11; YS00_12; YS00_13; YS00_14; YS00_15; YS00_16; YS00_17; YS00_18; YS00_19; YS00_20; YS00_21; YS00_22; YS00_23; YS00_24; YS00_25; YS00_26; YS00_27; YS00_28; YS00_29; YS00_30; YS00_31; YS00_32; YS00_33; YS00_34; YS00_35; YS00_36; YS00_37; YS00_38; YS00_39;
    Materialart: Dataset
    Format: application/zip, 17 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019-09-23
    Beschreibung: The large recurrent areas of open water and/or thin ice (polynyas) producing cold brine-enriched waters off the fast-ice edge are evident in the Laptev Sea in winter time. A number of abrupt positively correlated transitions in temperature and salinity were recorded in the bottom and intermediate layers at a mooring station in the West New Siberian (WNS) polynya in February-March 2008. Being in the range of -0.5 degrees C and -1.6 psu these changes are induced by horizontal motions across the polynya and correspond to temperature and salinity horizontal gradients in the range of 0.3-1.0 degrees C/10 km and 1.4-3.5 psu/10 km, respectively. The events of distinct freshening and temperature decrease coincide with a northward current off the fast-ice edge, while southward currents brought saltier and warmer waters at intermediate depths. We suggest that the observed transitions are connected to altering pycnocline depths across the polynya. The source of relatively fresher waters at the intermediate depths in polynya is supposed to originate from penetrative mixing of surface low salinity waters to intermediate water depth. Several forcing processes that could be responsible for a penetrative mixing through the density interface in polynya are discussed. These are penetrative convection and shear-driven mixing that originates from two-layer water dynamics and/or baroclinic tidal motions. The heavily ridged seaward fast-ice edge could produce an additional source of turbulent mixing even through a shear-free density interface due to the increased roughness at the ice-water interface
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 (14). L14613.
    Publikationsdatum: 2015-01-28
    Beschreibung: High interannual variability of summer surface salinity over the Laptev and East Siberian Sea shelves derived from historical records of the 1950s–2000s is attributed to atmospheric vorticity variations. In the cyclonic regime (positive vorticity) the eastward diversion of the Laptev Sea riverine water results in a negative salinity anomaly to the east of the Lena Delta and farther to the East Siberian Sea, and a positive anomaly to the north of the Lena Delta. Anticyclonic (negative) vorticity results in negative salinity anomalies northward from the Lena Delta due to freshwater advection toward the north, and a corresponding salinity increase eastward.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    Deutsche Gesellschaft für Polarforschung; Alfred-Wegener-Institu für Polar- und Meeresforschung
    In:  Polarforschung, 81 (2). pp. 85-102.
    Publikationsdatum: 2019-09-23
    Beschreibung: Large-scale features of Arctic Ocean temperature and salinity distributions observed during 2007-2009 are described and discussed in the context of historical observation in order to document long-term variations. Oceanographic observations carried out in the frame of the International Polar Year (IPY 2007/2008) demonstrated unique conditions in the Arctic Ocean and seas during that period. For example, analyses of upper ocean temperature and salinity patterns 2007-2009 revealed an apparent frontal zone separating the Eurasian and Canadian Basins. We found that after 2007 the temperature and salinity trends of the surface layer of the Arctic Ocean followed the same trajectory as in the past, however their regional distribution and intensity changed. The average salinity in the surface 5-50 m layer of the Eurasian Basin in winter of 2007-2009 was higher than in the 1950s and 1970s, but did not exceed the average salinity in the early 1990s. In the Canadian Basin, the upper ocean salinity in 2007-2009 was much lower than in the 1950s-1960s. Volumetric analysis of water masses demonstrated a general increase of volume of the intermediate (150-900 m depth range) Atlantic Water (AW) temperature, with substantial rise of the upper boundary of the AW. The thermal expansion of AW in the Arctic Basin is unique during the last 20 years. The most distinct variations of the hydrographic conditions were observed in the Canadian Basin. In general, the maximum of the AW temperature decreased in 2009 relative to 2007 and the upper boundary became shallower by 50 to 150 m the Eurasian Basin. The AW salinity in 2007-2009 was not exceptional during the IPY. Observations in the deeper layers indicated that the bottom waters have become slightly warmer and less saline.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    facet.materialart.
    Unbekannt
    International Glaciological Society
    In:  Annals of Glaciology, 33 (1). pp. 373-376.
    Publikationsdatum: 2019-09-23
    Beschreibung: A detailed analysis of hydrographic data from a period of 20 years (1980 99) has shown that the persistent presence of a flaw polynya influences mesoscale hydrography of the Laptev Sea, Russian Arctic. Based on these data, the interannual variability of surface,water salinity within the polynya has been estimated. As the salinity increase in the water layer is mainly caused by the formation of new ice within the polynya, the average ice-production rate of the polynya was calculated. The results indicate all ice production of 3-4 in per season. further aim of this study was to calculate the probability that the convective mixing in the polynya penetrates to the sea-floor. It is demonstrated that the probability is maximal in the flaw-polynya area, but does not exceed 20% in the eastern and 70% in the western part of the polynya, as a result of strong vertical density stratification from river runoff, especially in the eastern Laptev Sea. Additional studies of water circulation in the marginal zone of the flaw polynya were carried out during field observations in April-May 1999. On the basis of conductivity-temperature-depth and current measurements we deduce that high current velocities (62 cm s(-1)) recorded in surface waters near the fast-ice edge are caused by a convectively driven circulation system under the polynya, Our measurements indicate that these high-velocity currents are part of a cellular circulation, which results from the rejection of brine during intensive ice formation in the polynya. The observed azimuthal alignment of the crystalline structure of sea ice is also, most probably, the consequence of this quasi-stationary, cellular circulation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-09-23
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...